pyarrow.Tensor
#
pyarrow.Tensor
是 \(n\) 维 pyarrow.Array
,也就是张量。
import pyarrow as pa
import numpy as np
x = np.array([[2, 2, 4], [4, 5, 100]], np.int32)
y = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"])
y
<pyarrow.Tensor>
type: int32
shape: (2, 3)
strides: (12, 4)
pyarrow.Tensor.dim_name()
(self, i)#
返回第 i
个张量维度的名称。
import pyarrow as pa
import numpy as np
x = np.array([[2, 2, 4], [4, 5, 100]], np.int32)
tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"])
tensor.dim_name(0), tensor.dim_name(1)
('dim1', 'dim2')
pyarrow.Tensor.equals()
(self, Tensor other)#
如果张量包含完全相同的数据,则返回 True
。
import pyarrow as pa
import numpy as np
x = np.array([[2, 2, 4], [4, 5, 100]], np.int32)
tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"])
y = np.array([[2, 2, 4], [4, 5, 10]], np.int32)
tensor2 = pa.Tensor.from_numpy(y, dim_names=["a","b"])
tensor.equals(tensor), tensor.equals(tensor2)
(True, False)
x1 = np.array([[2, 2, 4], [4, 5, 100]], np.int32)
x2 = np.array([[2, 2, 4], [4, 5, 100]], np.int32)
tensor1 = pa.Tensor.from_numpy(x1, dim_names=["dim11","dim12"])
tensor2 = pa.Tensor.from_numpy(x2, dim_names=["dim21","dim22"])
tensor1.equals(tensor2), tensor1 == tensor2
(True, True)
pyarrow.Tensor.to_numpy()
#
x = np.array([[2, 2, 4], [4, 5, 100]], np.int32)
tensor = pa.Tensor.from_numpy(x, dim_names=["dim1","dim2"])
tensor.to_numpy()
array([[ 2, 2, 4],
[ 4, 5, 100]], dtype=int32)