参考

参考#

参考资料

[ACW18]

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples. 2018. arXiv:1802.00420.

[GSS15]

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. 2015. arXiv:1412.6572.

[MMS+19]

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. 2019. arXiv:1706.06083.

[MDFF16]

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and accurate method to fool deep neural networks. 2016. arXiv:1511.04599.

[PMG+17]

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram Swami. Practical black-box attacks against machine learning. 2017. arXiv:1602.02697.

[Sta09]

John Stachurski. Economic Dynamics: Theory and Computation. Volume 1 of MIT Press Books. The MIT Press, edition, December 2009. ISBN ARRAY(0x4dac6e08). URL: https://ideas.repec.org/b/mtp/titles/0262012774.html, doi:.

[SZS+14]

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. 2014. arXiv:1312.6199.