Colormap normalizations#
Demonstration of using norm to map colormaps onto data in non-linear ways.
… redirect-from:: /gallery/userdemo/colormap_normalizations
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.colors as colors
N = 100
LogNorm#
This example data has a low hump with a spike coming out of its center. If plotted using a linear colour scale, then only the spike will be visible. To see both hump and spike, this requires the z/colour axis on a log scale.
Instead of transforming the data with pcolor(log10(Z))
, the color mapping can be
made logarithmic using a .LogNorm
.
X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)]
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X * 10)**2 - (Y * 10)**2)
Z = Z1 + 50 * Z2
fig, ax = plt.subplots(2, 1)
pcm = ax[0].pcolor(X, Y, Z, cmap='PuBu_r', shading='nearest')
fig.colorbar(pcm, ax=ax[0], extend='max', label='linear scaling')
pcm = ax[1].pcolor(X, Y, Z, cmap='PuBu_r', shading='nearest',
norm=colors.LogNorm(vmin=Z.min(), vmax=Z.max()))
fig.colorbar(pcm, ax=ax[1], extend='max', label='LogNorm')
<matplotlib.colorbar.Colorbar at 0x7f8a1bfae270>
PowerNorm#
This example data mixes a power-law trend in X with a rectified sine wave in Y. If plotted using a linear colour scale, then the power-law trend in X partially obscures the sine wave in Y.
The power law can be removed using a .PowerNorm
.
X, Y = np.mgrid[0:3:complex(0, N), 0:2:complex(0, N)]
Z = (1 + np.sin(Y * 10)) * X**2
fig, ax = plt.subplots(2, 1)
pcm = ax[0].pcolormesh(X, Y, Z, cmap='PuBu_r', shading='nearest')
fig.colorbar(pcm, ax=ax[0], extend='max', label='linear scaling')
pcm = ax[1].pcolormesh(X, Y, Z, cmap='PuBu_r', shading='nearest',
norm=colors.PowerNorm(gamma=0.5))
fig.colorbar(pcm, ax=ax[1], extend='max', label='PowerNorm')
<matplotlib.colorbar.Colorbar at 0x7f8a19a86f90>
SymLogNorm#
This example data has two humps, one negative and one positive, The positive hump has 5 times the amplitude of the negative. If plotted with a linear colour scale, then the detail in the negative hump is obscured.
Here we logarithmically scale the positive and negative data separately with
.SymLogNorm
.
Note that colorbar labels do not come out looking very good.
X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)]
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (5 * Z1 - Z2) * 2
fig, ax = plt.subplots(2, 1)
pcm = ax[0].pcolormesh(X, Y, Z, cmap='RdBu_r', shading='nearest',
vmin=-np.max(Z))
fig.colorbar(pcm, ax=ax[0], extend='both', label='linear scaling')
pcm = ax[1].pcolormesh(X, Y, Z, cmap='RdBu_r', shading='nearest',
norm=colors.SymLogNorm(linthresh=0.015,
vmin=-10.0, vmax=10.0, base=10))
fig.colorbar(pcm, ax=ax[1], extend='both', label='SymLogNorm')
<matplotlib.colorbar.Colorbar at 0x7f8a198c38f0>
Custom Norm#
Alternatively, the above example data can be scaled with a customized normalization. This one normalizes the negative data differently from the positive.
# Example of making your own norm. Also see matplotlib.colors.
# From Joe Kington: This one gives two different linear ramps:
class MidpointNormalize(colors.Normalize):
def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False):
self.midpoint = midpoint
super().__init__(vmin, vmax, clip)
def __call__(self, value, clip=None):
# I'm ignoring masked values and all kinds of edge cases to make a
# simple example...
x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1]
return np.ma.masked_array(np.interp(value, x, y))
fig, ax = plt.subplots(2, 1)
pcm = ax[0].pcolormesh(X, Y, Z, cmap='RdBu_r', shading='nearest',
vmin=-np.max(Z))
fig.colorbar(pcm, ax=ax[0], extend='both', label='linear scaling')
pcm = ax[1].pcolormesh(X, Y, Z, cmap='RdBu_r', shading='nearest',
norm=MidpointNormalize(midpoint=0))
fig.colorbar(pcm, ax=ax[1], extend='both', label='Custom norm')
<matplotlib.colorbar.Colorbar at 0x7f8a1977ddf0>
BoundaryNorm#
For arbitrarily dividing the color scale, the .BoundaryNorm
may be used; by
providing the boundaries for colors, this norm puts the first color in between the
first pair, the second color between the second pair, etc.
fig, ax = plt.subplots(3, 1, layout='constrained')
pcm = ax[0].pcolormesh(X, Y, Z, cmap='RdBu_r', shading='nearest',
vmin=-np.max(Z))
fig.colorbar(pcm, ax=ax[0], extend='both', orientation='vertical',
label='linear scaling')
# Evenly-spaced bounds gives a contour-like effect.
bounds = np.linspace(-2, 2, 11)
norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256)
pcm = ax[1].pcolormesh(X, Y, Z, cmap='RdBu_r', shading='nearest',
norm=norm)
fig.colorbar(pcm, ax=ax[1], extend='both', orientation='vertical',
label='BoundaryNorm\nlinspace(-2, 2, 11)')
# Unevenly-spaced bounds changes the colormapping.
bounds = np.array([-1, -0.5, 0, 2.5, 5])
norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256)
pcm = ax[2].pcolormesh(X, Y, Z, cmap='RdBu_r', shading='nearest',
norm=norm)
fig.colorbar(pcm, ax=ax[2], extend='both', orientation='vertical',
label='BoundaryNorm\n[-1, -0.5, 0, 2.5, 5]')
plt.show()