Contour plot of irregularly spaced data#
Comparison of a contour plot of irregularly spaced data interpolated on a regular grid versus a tricontour plot for an unstructured triangular grid.
Since ~.axes.Axes.contour
and ~.axes.Axes.contourf
expect the data to live
on a regular grid, plotting a contour plot of irregularly spaced data requires
different methods. The two options are:
Interpolate the data to a regular grid first. This can be done with on-board means, e.g. via
~.tri.LinearTriInterpolator
or using external functionality e.g. viascipy.interpolate.griddata
. Then plot the interpolated data with the usual~.axes.Axes.contour
.Directly use
~.axes.Axes.tricontour
or~.axes.Axes.tricontourf
which will perform a triangulation internally.
This example shows both methods in action.
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.tri as tri
np.random.seed(19680801)
npts = 200
ngridx = 100
ngridy = 200
x = np.random.uniform(-2, 2, npts)
y = np.random.uniform(-2, 2, npts)
z = x * np.exp(-x**2 - y**2)
fig, (ax1, ax2) = plt.subplots(nrows=2)
# -----------------------
# Interpolation on a grid
# -----------------------
# A contour plot of irregularly spaced data coordinates
# via interpolation on a grid.
# Create grid values first.
xi = np.linspace(-2.1, 2.1, ngridx)
yi = np.linspace(-2.1, 2.1, ngridy)
# Linearly interpolate the data (x, y) on a grid defined by (xi, yi).
triang = tri.Triangulation(x, y)
interpolator = tri.LinearTriInterpolator(triang, z)
Xi, Yi = np.meshgrid(xi, yi)
zi = interpolator(Xi, Yi)
# Note that scipy.interpolate provides means to interpolate data on a grid
# as well. The following would be an alternative to the four lines above:
# from scipy.interpolate import griddata
# zi = griddata((x, y), z, (xi[None, :], yi[:, None]), method='linear')
ax1.contour(xi, yi, zi, levels=14, linewidths=0.5, colors='k')
cntr1 = ax1.contourf(xi, yi, zi, levels=14, cmap="RdBu_r")
fig.colorbar(cntr1, ax=ax1)
ax1.plot(x, y, 'ko', ms=3)
ax1.set(xlim=(-2, 2), ylim=(-2, 2))
ax1.set_title('grid and contour (%d points, %d grid points)' %
(npts, ngridx * ngridy))
# ----------
# Tricontour
# ----------
# Directly supply the unordered, irregularly spaced coordinates
# to tricontour.
ax2.tricontour(x, y, z, levels=14, linewidths=0.5, colors='k')
cntr2 = ax2.tricontourf(x, y, z, levels=14, cmap="RdBu_r")
fig.colorbar(cntr2, ax=ax2)
ax2.plot(x, y, 'ko', ms=3)
ax2.set(xlim=(-2, 2), ylim=(-2, 2))
ax2.set_title('tricontour (%d points)' % npts)
plt.subplots_adjust(hspace=0.5)
plt.show()
… admonition:: References
The use of the following functions, methods, classes and modules is shown in this example:
matplotlib.axes.Axes.contour
/matplotlib.pyplot.contour
matplotlib.axes.Axes.contourf
/matplotlib.pyplot.contourf
matplotlib.axes.Axes.tricontour
/matplotlib.pyplot.tricontour
matplotlib.axes.Axes.tricontourf
/matplotlib.pyplot.tricontourf