tvm.relay.backend
tvm.relay.backend#
Backend codegen modules for relay.
The Python interface to the Relay reference interpreter.
- class tvm.relay.backend.interpreter.Executor[源代码]#
An abstract interface for executing Relay programs.
- _convert_args(expr, args, kwargs)[源代码]#
Convert the combination of arguments and keyword arguments into a sequence of arguments that may be passed to a Relay evaluator.
We first provide all positional arguments, and then attempt to fill in the remaining arguments using the keyword arguments. We map the keyword arguments to the corresponding parameters, if there is an ambiguity between positional and keyword arguments this procedure will raise an error.
- expr: relay.Expr
The expression to evaluate
- args: List[tvm.nd.NDArray]
The arguments to pass to the evaluator.
- kwargs: Dict[str, tvm.NDArrray]
The keyword arguments to pass to the evaluator.
- 返回
- List[tvm.nd.NDArray]
The new arguments with all keyword arguments placed in the correct slot.
- 返回类型
args
- class tvm.relay.backend.interpreter.Interpreter(mod, device, target)[源代码]#
Simple interpreter interface.
- modtvm.IRModule
The module to support the execution.
- deviceDevice
The runtime device to run the code on.
- targettvm.Target
The target option to build the function. Only homogeneous execution is supported.
CAUTION: Despite the API the module is prepared upon each call to evaluate rather than once in create_executor. That is: .. code-block:: python
executor = relay.create_executor(kind=”debug”, mod=module) a = executor.evaluate(expr)(args1) b = executor.evaluate(expr)(args2)
will prepare all the bindings in module twice. For efficiency, try to hoist calls to evaluate as high as possible, preferably immediately after create_executor: .. code-block:: python
func = relay.create_executor(kind=”debug”, mod=module).evaluate(expr) a = func(args1) b = func(args2)
TE compiler engine (replacing legacy compile_engine).
- class tvm.relay.backend.te_compiler.CCacheKey(source_func, target)[源代码]#
Key in the TE Compiler.
- source_functvm.relay.Function
The source function.
- targettvm.Target
The target we want to run the function on.
- class tvm.relay.backend.te_compiler.CCacheValue[源代码]#
Value in the TE Compiler, including usage statistics.
- class tvm.relay.backend.te_compiler.TECompiler[源代码]#
TECompiler to get lowered code.
- items()[源代码]#
List items in the cache. Returns ——- item_list : List[Tuple[CCacheKey, CCacheValue]]
The list of items.
- tvm.relay.backend.te_compiler.get()[源代码]#
Get the global TE Compiler.
- enginetvm.relay.backend.TECompiler
The TE Compiler.
- tvm.relay.backend.te_compiler.get_valid_implementations(op, attrs, inputs, out_type, target)[源代码]#
Get all valid implementations from the op strategy.
Note that this function doesn’t support op with symbolic input shapes.
- optvm.ir.Op
Relay operator.
- attrsobject
The op attribute.
- inputsList[tvm.te.Tensor]
Input tensors to the op.
- out_typerelay.Type
The output type.
- targettvm.target.Target
The target to compile the op.
- retList[relay.op.OpImplementation]
The list of all valid op implementations.
- tvm.relay.backend.te_compiler.select_implementation(op, attrs, inputs, out_type, target, use_autotvm=True)[源代码]#
Select the best implementation from the op strategy.
If use_autotvm is True, it’ll first try to find the best implementation based on AutoTVM profile results. If no AutoTVM profile result is found, it’ll choose the implementation with highest plevel.
If use_autotvm is False, it’ll directly choose the implementation with highest plevel.
Note that this function doesn’t support op with symbolic input shapes.
- optvm.ir.Op
Relay operator.
- attrsobject
The op attribute.
- inputsList[tvm.te.Tensor]
Input tensors to the op.
- out_typerelay.Type
The output type.
- targettvm.target.Target
The target to compile the op.
- use_autotvmbool
Whether query AutoTVM to pick the best.
- rettuple(relay.op.OpImplementation, List[tvm.te.Tensor])
The best op implementation and the corresponding output tensors.
A compiler from a Relay expression to TVM’s graph executor.
The compiler is built from a few pieces.
First we define a compiler from a single Relay expression to the graph language. We require the expression to be a function. The function’s parameters correspond to the placeholder/inputs and model parameters found in the computation graph representation. The body of the function represents the computation graph.
The compiler’s output is a program in the graph language, which is composed of Node, NodeRef, InputNode, OpNode. This “little language” represents programs in TVM’s graph format.
To connect to the graph executor, we use a printer that converts our graph format into TVM’s JSON format. The resulting string can be loaded by contrib.graph_executor or any other TVM runtime compatible systems.
- class tvm.relay.backend.graph_executor_codegen.GraphExecutorCodegen(mod, target)[源代码]#
The compiler from Relay to the TVM runtime system.
- codegen(ir_module, func)[源代码]#
Compile a single function into a graph.
- ir_module: tvm.ir.Module
The module to compile
- func: tvm.relay.Expr
The function to compile.
- graph_jsonstr
The graph json that can be consumed by runtime.
- modIRModule or Dict[Target, IRModule]
The lowered functions.
- paramsDict[str, tvm.nd.NDArray]
Additional constant parameters.
The Relay Virtual Machine.
Implements a Python interface to compiling and executing on the Relay VM.
- class tvm.relay.backend.vm.VMCompiler[源代码]#
Compiler that compiles Relay module to VM executable.
- get_exec()[源代码]#
Get the VM executable.
- exectvm.runtime.vm.Executable
The VM executable that contains both library code and bytecode.
- lower(mod, target=None, target_host=None)[源代码]#
Lower the module to VM bytecode.
- modtvm.IRModule
The Relay module to build.
- targetany multi-target like object, see Target.canon_multi_target
For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets.
- target_hostany target-like object, see Target.canon_target
Host compilation target, if target is device.
- optimize(mod, target=None, target_host=None, params=None)[源代码]#
Helper method that optimizes a Relay module via VM.
mod : tvm.IRModule
- targetany multi-target like object, see Target.canon_multi_target
For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets.
- target_hostany target-like object, see Target.canon_target
Host compilation target, if target is device.
- paramsdict of str to NDArray
Input parameters to the graph that do not change during inference time. Used for constant folding.
- modtvm.IRModule
The optimized relay module.
- paramsdict
The parameters of the final module.
- class tvm.relay.backend.vm.VMExecutor(mod, device, target)[源代码]#
An implementation of the executor interface for the Relay VM.
Useful interface for experimentation and debugging the VM can also be used directly from the API. supported by tvm.runtime.vm.
- mod
IRModule
The module to support the execution.
- device
Device
The runtime device to run the code on.
- targetany multi-target like object, see Target.canon_multi_target
For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets.
- mod
- tvm.relay.backend.vm.compile(mod, target=None, target_host=None, params=None)[源代码]#
Compile the module to VM executable. A helper function for VMCompiler.
- modtvm.IRModule
The Relay module to build.
- targetany multi-target like object, see Target.canon_multi_target
For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets.
- target_hostNone, or any target-like object, see Target.canon_target
Host compilation target, if target is device. When TVM compiles device specific program such as CUDA, we also need host(CPU) side code to interact with the driver to setup the dimensions and parameters correctly. target_host is used to specify the host side codegen target. By default, llvm is used if it is enabled, otherwise a stackvm intepreter is used.
- paramsdict of str to NDArray
Input parameters to the graph that do not change during inference time. Used for constant folding.
- exectvm.runtime.vm.Executable
The VM executable that contains both library code and bytecode.