调试器
导航
调试器#
TVM 调试器是调试 TVM 计算图执行的接口。它有助于在 TVM 运行时提供对图结构和张量值的访问。
调试交换格式#
1. 计算图#
通过 json 序列化格式的 Relay 构建的优化图被丢弃了。它包含了关于图的全部信息。UX 可以直接使用这个图,也可以将这个图转换成 UX 可以理解的格式。
下面将解释 Graph JSON 格式:
在 json 中,节点是占位符或可计算节点。节点存储为列表。节点包含以下信息:
op
:运算类型,null
意味着它是占位符/变量/输入节点,tvm_op
意味着这个节点可以被执行name
:节点名字inputs
:此运算的 inputs 位置,inputs 是包含 (nodeid, index, version) 的元组列表。(可选)attrs
:包含以下信息的节点属性flatten_data
:是否需要在执行前将数据扁平化(flattened)func_name
:融合函数名,对应于 Relay 编译过程生成的库中的符号。num_inputs
:此节点的 inputs 个数num_outputs
:此节点产生的 outputs 个数
节点的索引列表,它是计算图的占位符/变量/输入节点 或 constant/param。
作为图的 output 项的列表。
存储 forward 路径的历史,所以您可以跳过在推断任务中构建整个图。
可以包含版本号或类似的有用信息。
storage_id
:存储布局中每个节点的内存 slot id。dtype
:每个节点的数据类型 (enum 值)。dltype
:每个节点的数据类型按顺序排列。shape
:每个节点的形状 k 阶。device_index
:为图中的每个条目分配设备。
转储图的示例:
{
"nodes": [ # List of nodes
{
"op": "null", # operation type = null, this is a placeholder/variable/input or constant/param node
"name": "x", # Name of the argument node
"inputs": [] # inputs for this node, its none since this is an argument node
},
{
"op": "tvm_op", # operation type = tvm_op, this node can be executed
"name": "relu0", # Name of the node
"attrs": { # Attributes of the node
"flatten_data": "0", # Whether this data need to be flattened
"func_name": "fuse_l2_normalize_relu", # Fused function name, corresponds to the symbol in the lib generated by compilation process
"num_inputs": "1", # Number of inputs for this node
"num_outputs": "1" # Number of outputs this node produces
},
"inputs": [[0, 0, 0]] # Position of the inputs for this operation
}
],
"arg_nodes": [0], # Which all nodes in this are argument nodes
"node_row_ptr": [0, 1, 2], # Row indices for faster depth first search
"heads": [[1, 0, 0]], # Position of the output nodes for this operation
"attrs": { # Attributes for the graph
"storage_id": ["list_int", [1, 0]], # memory slot id for each node in the storage layout
"dtype": ["list_int", [0, 0]], # Datatype of each node (enum value)
"dltype": ["list_str", [ # Datatype of each node in order
"float32",
"float32"]],
"shape": ["list_shape", [ # Shape of each node k order
[1, 3, 20, 20],
[1, 3, 20, 20]]],
"device_index": ["list_int", [1, 1]], # Device assignment for each node in order
}
}
2. Tensor 转储#
执行后收到的张量在 tvm.ndarray
类型中所有的张量将以二进制字节的序列化格式保存。结果二进制字节可以通过 API load_params
加载。
加载参数的示例#
with open(path_params, "rb") as fi:
loaded_params = bytearray(fi.read())
module.load_params(loaded_params)
如果使用 Debugger?#
在
config.cmake
中设置USE_PROFILER
为ON
执行
make tvm
,这样它就会生成libtvm_runtime.so
在前端脚本中替换
from tvm.contrib import graph_executor
导入为from tvm.contrib.debugger.debug_executor import GraphModuleDebug
from tvm.contrib.debugger.debug_executor import GraphModuleDebug
m = GraphModuleDebug(
lib["debug_create"]("default", dev),
[dev],
lib.graph_json,
dump_root="/tmp/tvmdbg",
)
# set inputs
m.set_input('data', tvm.nd.array(data.astype(dtype)))
m.set_input(**params)
# execute
m.run()
tvm_out = m.get_output(0, tvm.nd.empty(out_shape, dtype)).numpy()
如果 network 之前使用
lib.export_library("network.so")
像共享对象文件/动态链接库一样导出到外部库,调试运行时的初始化将略有不同
lib = tvm.runtime.load_module("network.so")
m = graph_executor.create(lib["get_graph_json"](), lib, dev, dump_root="/tmp/tvmdbg")
# set inputs
m.set_input('data', tvm.nd.array(data.astype(dtype)))
m.set_input(**params)
# execute
m.run()
tvm_out = m.get_output(0, tvm.nd.empty(out_shape, dtype)).numpy()
输出被转储到 /tmp
文件夹中的临时文件夹或创建运行时指定的文件夹。
输出示例#
下面是调试器的输出示例:
Node Name Ops Time(us) Time(%) Start Time End Time Shape Inputs Outputs
--------- --- -------- ------- ---------- -------- ----- ------ -------
1_NCHW1c fuse___layout_transform___4 56.52 0.02 15:24:44.177475 15:24:44.177534 (1, 1, 224, 224) 1 1
_contrib_conv2d_nchwc0 fuse__contrib_conv2d_NCHWc 12436.11 3.4 15:24:44.177549 15:24:44.189993 (1, 1, 224, 224, 1) 2 1
relu0_NCHW8c fuse___layout_transform___broadcast_add_relu___layout_transform__ 4375.43 1.2 15:24:44.190027 15:24:44.194410 (8, 1, 5, 5, 1, 8) 2 1
_contrib_conv2d_nchwc1 fuse__contrib_conv2d_NCHWc_1 213108.6 58.28 15:24:44.194440 15:24:44.407558 (1, 8, 224, 224, 8) 2 1
relu1_NCHW8c fuse___layout_transform___broadcast_add_relu___layout_transform__ 2265.57 0.62 15:24:44.407600 15:24:44.409874 (64, 1, 1) 2 1
_contrib_conv2d_nchwc2 fuse__contrib_conv2d_NCHWc_2 104623.15 28.61 15:24:44.409905 15:24:44.514535 (1, 8, 224, 224, 8) 2 1
relu2_NCHW2c fuse___layout_transform___broadcast_add_relu___layout_transform___1 2004.77 0.55 15:24:44.514567 15:24:44.516582 (8, 8, 3, 3, 8, 8) 2 1
_contrib_conv2d_nchwc3 fuse__contrib_conv2d_NCHWc_3 25218.4 6.9 15:24:44.516628 15:24:44.541856 (1, 8, 224, 224, 8) 2 1
reshape1 fuse___layout_transform___broadcast_add_reshape_transpose_reshape 1554.25 0.43 15:24:44.541893 15:24:44.543452 (64, 1, 1) 2 1