tvm.relay.backend.vm 源代码

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=no-else-return, unidiomatic-typecheck, undefined-variable, invalid-name, redefined-builtin
"""
The Relay Virtual Machine.

Implements a Python interface to compiling and executing on the Relay VM.
"""
import numpy as np

import tvm.runtime.ndarray as _nd
import tvm.runtime.vm as vm_rt
from tvm import autotvm
from tvm.relay import expr as _expr
from tvm.relay.backend.interpreter import Executor
from tvm.target import Target
from . import _vm


[文档]def compile(mod, target=None, target_host=None, params=None): """Compile the module to VM executable. A helper function for VMCompiler. Parameters ---------- mod : tvm.IRModule The Relay module to build. target : any multi-target like object, see Target.canon_multi_target For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets. target_host : None, or any target-like object, see Target.canon_target Host compilation target, if target is device. When TVM compiles device specific program such as CUDA, we also need host(CPU) side code to interact with the driver to setup the dimensions and parameters correctly. target_host is used to specify the host side codegen target. By default, llvm is used if it is enabled, otherwise a stackvm intepreter is used. params : dict of str to NDArray Input parameters to the graph that do not change during inference time. Used for constant folding. Returns ------- exec : tvm.runtime.vm.Executable The VM executable that contains both library code and bytecode. """ compiler = VMCompiler() if params: compiler.set_params(params) compiler.lower(mod, target, target_host) compiler.codegen() return compiler.get_exec()
[文档]class VMCompiler(object): """Compiler that compiles Relay module to VM executable.""" def __init__(self): self.mod = _vm._VMCompiler() self._lower = self.mod["lower"] self._codegen = self.mod["codegen"] self._get_exec = self.mod["get_executable"] self._set_params_func = self.mod["set_params"] self._get_params_func = self.mod["get_params"] self._optimize = self.mod["optimize"]
[文档] def set_params(self, params): """Set constant parameters for the model. Parameters ---------- params : dict of str to NDArray Input parameters to the graph that do not change during inference time. Used for constant folding. """ inputs = {} for name, param in params.items(): if isinstance(param, np.ndarray): param = _nd.array(param) inputs[name] = _expr.const(param) self._set_params_func(inputs)
[文档] def get_params(self): """Return the updated weights.""" params = self._get_params_func() ret = {} for key, value in params.items(): ret[key] = value.data return ret
[文档] def lower(self, mod, target=None, target_host=None): """Lower the module to VM bytecode. Parameters ---------- mod : tvm.IRModule The Relay module to build. target : any multi-target like object, see Target.canon_multi_target For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets. target_host : any target-like object, see Target.canon_target Host compilation target, if target is device. """ raw_targets = Target.canon_multi_target_and_host(target, target_host) tophub_context = self._tophub_context(raw_targets) with tophub_context: self._lower(mod, raw_targets)
[文档] def codegen(self): """Generate the kernel library.""" self._codegen()
[文档] def optimize(self, mod, target=None, target_host=None, params=None): """Helper method that optimizes a Relay module via VM. Parameters ---------- mod : tvm.IRModule target : any multi-target like object, see Target.canon_multi_target For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets. target_host : any target-like object, see Target.canon_target Host compilation target, if target is device. params : dict of str to NDArray Input parameters to the graph that do not change during inference time. Used for constant folding. Returns ------- mod : tvm.IRModule The optimized relay module. params : dict The parameters of the final module. """ raw_targets = Target.canon_multi_target_and_host(target, target_host) if params: self.set_params(params) return self._optimize(mod, raw_targets), self.get_params()
[文档] def get_exec(self): """Get the VM executable. Returns ------- exec : tvm.runtime.vm.Executable The VM executable that contains both library code and bytecode. """ return vm_rt.Executable(self._get_exec())
[文档] def _tophub_context(self, raw_targets): """Get the autotvm context.""" # If current dispatch context is fallback context (the default root context), # then load pre-tuned parameters from TopHub if isinstance(autotvm.DispatchContext.current, autotvm.FallbackContext): tophub_context = autotvm.tophub.context(raw_targets) else: tophub_context = autotvm.utils.EmptyContext() return tophub_context
[文档]class VMExecutor(Executor): """ An implementation of the executor interface for the Relay VM. Useful interface for experimentation and debugging the VM can also be used directly from the API. supported by `tvm.runtime.vm`. Parameters ---------- mod : :py:class:`~tvm.IRModule` The module to support the execution. device : :py:class:`~tvm.runtime.Device` The runtime device to run the code on. target : any multi-target like object, see Target.canon_multi_target For homogeneous compilation, the unique build target. For heterogeneous compilation, a dictionary or list of possible build targets. """ def __init__(self, mod, device, target): if mod is None: raise RuntimeError("Must provide module to get VM executor.") self.mod = mod self.device = device self.target = target self.executable = None self.vm = None def _make_executor(self, expr=None): if expr: self.mod["main"] = expr self.executable = compile(self.mod, self.target) self.vm = vm_rt.VirtualMachine(self.executable, self.device) def _vm_wrapper(*args, **kwargs): args = self._convert_args(self.mod["main"], args, kwargs) return self.vm.run(*args) return _vm_wrapper