tvm.relay.testing
tvm.relay.testing#
a simple multilayer perceptron
- tvm.relay.testing.mlp.get_net(batch_size, num_classes=10, image_shape=(1, 28, 28), dtype='float32')[源代码]#
Get network a simple multilayer perceptron.
- batch_sizeint
The batch size used in the model
- num_classesint, optional
Number of claseses
- image_shapetuple, optional
The input image shape
- dtypestr, optional
The data type
- netrelay.Function
The dataflow.
- tvm.relay.testing.mlp.get_workload(batch_size, num_classes=10, image_shape=(1, 28, 28), dtype='float32')[源代码]#
Get benchmark workload for a simple multilayer perceptron.
- batch_sizeint
The batch size used in the model
- num_classesint, optional
Number of claseses
- image_shapetuple, optional
The input image shape
- dtypestr, optional
The data type
- modtvm.IRModule
The relay module that contains a mlp network.
- paramsdict of str to NDArray
The parameters.
Adapted from https://github.com/tornadomeet/ResNet/blob/master/symbol_resnet.py Original author Wei Wu
Implemented the following paper:
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. “Identity Mappings in Deep Residual Networks”
- tvm.relay.testing.resnet.get_net(batch_size, num_classes, num_layers=50, image_shape=(3, 224, 224), layout='NCHW', dtype='float32', **kwargs)[源代码]#
Adapted from https://github.com/tornadomeet/ResNet/blob/master/train_resnet.py Original author Wei Wu
- tvm.relay.testing.resnet.get_workload(batch_size=1, num_classes=1000, num_layers=18, image_shape=(3, 224, 224), layout='NCHW', dtype='float32', **kwargs)[源代码]#
Get benchmark workload for resnet
- batch_sizeint
The batch size used in the model
- num_classesint, optional
Number of classes
- num_layersint, optional
Number of layers
- image_shapetuple, optional
The input image shape
- layout: str
The data layout for conv2d
- dtypestr, optional
The data type
- kwargsdict
Extra arguments
- modtvm.IRModule
The relay module that contains a ResNet network.
- paramsdict of str to NDArray
The parameters.
- tvm.relay.testing.resnet.residual_unit(data, num_filter, stride, dim_match, name, bottle_neck=True, data_layout='NCHW', kernel_layout='IOHW')[源代码]#
Return ResNet Unit symbol for building ResNet
- datastr
Input data
- num_filterint
Number of output channels
- bnfint
Bottle neck channels factor with regard to num_filter
- stridetuple
Stride used in convolution
- dim_matchbool
True means channel number between input and output is the same, otherwise means differ
- namestr
Base name of the operators
- tvm.relay.testing.resnet.resnet(units, num_stages, filter_list, num_classes, data_shape, bottle_neck=True, layout='NCHW', dtype='float32')[源代码]#
Return ResNet Program.
- unitslist
Number of units in each stage
- num_stagesint
Number of stages
- filter_listlist
Channel size of each stage
- num_classesint
Output size of symbol
- data_shapetuple of int.
The shape of input data.
- bottle_neckbool
Whether apply bottleneck transformation.
- layout: str
The data layout for conv2d
- dtypestr
The global data type.
Net of the generator of DCGAN
Adopted from: https://github.com/tqchen/mxnet-gan/blob/main/mxgan/generator.py
Reference: Radford, Alec, Luke Metz, and Soumith Chintala. “Unsupervised representation learning with deep convolutional generative adversarial networks.” arXiv preprint arXiv:1511.06434 (2015).
- tvm.relay.testing.dcgan.deconv2d(data, ishape, oshape, kshape, layout, name, stride=(2, 2))[源代码]#
a deconv layer that enlarges the feature map
- tvm.relay.testing.dcgan.deconv2d_bn_relu(data, prefix, **kwargs)[源代码]#
a block of deconv + batch norm + relu
- tvm.relay.testing.dcgan.get_net(batch_size, random_len=100, oshape=(3, 64, 64), ngf=128, code=None, layout='NCHW', dtype='float32')[源代码]#
get net of dcgan generator
- tvm.relay.testing.dcgan.get_workload(batch_size, oshape=(3, 64, 64), ngf=128, random_len=100, layout='NCHW', dtype='float32')[源代码]#
Get benchmark workload for a DCGAN generator
- batch_sizeint
The batch size used in the model
- oshapetuple, optional
The shape of output image, layout=”CHW”
- ngf: int, optional
The number of final feature maps in the generator
- random_lenint, optional
The length of random input
- layout: str, optional
The layout of conv2d transpose
- dtypestr, optional
The data type
- modtvm.IRModule
The relay module that contains a DCGAN network.
- paramsdict of str to NDArray
The parameters.
Port of NNVM version of MobileNet to Relay.
- tvm.relay.testing.mobilenet.conv_block(data, name, channels, kernel_size=(3, 3), strides=(1, 1), padding=(1, 1), epsilon=1e-05, layout='NCHW')[源代码]#
Helper function to construct conv_bn-relu
- tvm.relay.testing.mobilenet.get_workload(batch_size=1, num_classes=1000, image_shape=(3, 224, 224), dtype='float32', layout='NCHW')[源代码]#
Get benchmark workload for mobilenet
- batch_sizeint, optional
The batch size used in the model
- num_classesint, optional
Number of classes
- image_shapetuple, optional
The input image shape, cooperate with layout
- dtypestr, optional
The data type
- layoutstr, optional
The data layout of image_shape and the operators cooperate with image_shape
- modtvm.IRModule
The relay module that contains a MobileNet network.
- paramsdict of str to NDArray
The parameters.
- tvm.relay.testing.mobilenet.mobile_net(num_classes=1000, data_shape=(1, 3, 224, 224), dtype='float32', alpha=1.0, is_shallow=False, layout='NCHW')[源代码]#
Function to construct a MobileNet
- tvm.relay.testing.mobilenet.separable_conv_block(data, name, depthwise_channels, pointwise_channels, kernel_size=(3, 3), downsample=False, padding=(1, 1), epsilon=1e-05, layout='NCHW', dtype='float32')[源代码]#
Helper function to get a separable conv block
Implementation of a Long Short-Term Memory (LSTM) cell.
Adapted from: https://gist.github.com/merrymercy/5eb24e3b019f84200645bd001e9caae9
- tvm.relay.testing.lstm.get_net(iterations, num_hidden, batch_size=1, dtype='float32')[源代码]#
Constructs an unrolled RNN with LSTM cells
- tvm.relay.testing.lstm.get_workload(iterations, num_hidden, batch_size=1, dtype='float32')[源代码]#
Get benchmark workload for an LSTM RNN.
- iterationsint
The number of iterations in the desired LSTM RNN.
- num_hiddenint
The size of the hiddxen state
- batch_sizeint, optional (default 1)
The batch size used in the model
- dtypestr, optional (default “float32”)
The data type
- modtvm.IRModule
The relay module that contains a LSTM network.
- paramsdict of str to NDArray
The parameters.
- tvm.relay.testing.lstm.lstm_cell(num_hidden, batch_size=1, dtype='float32', name='')[源代码]#
Long-Short Term Memory (LSTM) network cell.
- num_hiddenint
Number of units in output symbol.
- batch_sizeint
Batch size (length of states).
- resulttvm.relay.Function
A Relay function that evaluates an LSTM cell. The function takes in a tensor of input data, a tuple of two states, and weights and biases for dense operations on the inputs and on the state. It returns a tuple with two members, an output tensor and a tuple of two new states.
Inception V3, suitable for images with around 299 x 299
Reference: Szegedy, Christian, et al. “Rethinking the Inception Architecture for Computer Vision.” arXiv preprint arXiv:1512.00567 (2015).
- Adopted from https://github.com/apache/incubator-mxnet/blob/master/
example/image-classification/symbols/inception-v3.py
- tvm.relay.testing.inception_v3.get_net(batch_size, num_classes, image_shape, dtype)[源代码]#
Get network a Inception v3 network.
- batch_sizeint
The batch size used in the model
- num_classesint, optional
Number of claseses
- image_shapetuple, optional
The input image shape
- dtypestr, optional
The data type
- netrelay.Function
The dataflow.
- tvm.relay.testing.inception_v3.get_workload(batch_size=1, num_classes=1000, image_shape=(3, 299, 299), dtype='float32')[源代码]#
Get benchmark workload for InceptionV3
- batch_sizeint
The batch size used in the model
- num_classesint, optional
Number of classes
- image_shapetuple, optional
The input image shape
- dtypestr, optional
The data type
- modtvm.IRModule
The relay module that contains an Inception V3 network.
- paramsdict of str to NDArray
The parameters.
Symbol of SqueezeNet
Reference: Iandola, Forrest N., et al. “Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size.” (2016).
- tvm.relay.testing.squeezenet.get_net(batch_size, image_shape, num_classes, version, dtype)[源代码]#
Get symbol of SqueezeNet
- batch_sizeint
The batch size used in the model
- image_shapetuple, optional
The input image shape
- num_classes: int
The number of classification results
- versionstr, optional
“1.0” or “1.1” of SqueezeNet
- tvm.relay.testing.squeezenet.get_workload(batch_size=1, num_classes=1000, version='1.0', image_shape=(3, 224, 224), dtype='float32')[源代码]#
Get benchmark workload for SqueezeNet
- batch_sizeint
The batch size used in the model
- num_classesint, optional
Number of classes
- versionstr, optional
“1.0” or “1.1” of SqueezeNet
- image_shapetuple, optional
The input image shape
- dtypestr, optional
The data type
- modtvm.IRModule
The relay module that contains a SqueezeNet network.
- paramsdict of str to NDArray
The parameters.
References:
Simonyan, Karen, and Andrew Zisserman. “Very deep convolutional networks for large-scale image recognition.” arXiv preprint arXiv:1409.1556 (2014).
- tvm.relay.testing.vgg.get_classifier(input_data, num_classes)[源代码]#
Get VGG classifier layers as fc layers.
- tvm.relay.testing.vgg.get_feature(internal_layer, layers, filters, batch_norm=False)[源代码]#
Get VGG feature body as stacks of convolutions.
- tvm.relay.testing.vgg.get_net(batch_size, image_shape, num_classes, dtype, num_layers=11, batch_norm=False)[源代码]#
- batch_sizeint
The batch size used in the model
- image_shapetuple, optional
The input image shape
- num_classesint, optional
Number of claseses
- dtypestr, optional
The data type
- num_layersint
Number of layers for the variant of vgg. Options are 11, 13, 16, 19.
- batch_normbool, default False
Use batch normalization.
- tvm.relay.testing.vgg.get_workload(batch_size, num_classes=1000, image_shape=(3, 224, 224), dtype='float32', num_layers=11, batch_norm=False)[源代码]#
Get benchmark workload for VGG nets.
- batch_sizeint
The batch size used in the model
- num_classesint, optional
Number of claseses
- image_shapetuple, optional
The input image shape
- dtypestr, optional
The data type
- num_layersint
Number of layers for the variant of vgg. Options are 11, 13, 16, 19.
- batch_normbool
Use batch normalization.
- modtvm.IRModule
The relay module that contains a VGG network.
- paramsdict of str to NDArray
The parameters.
Port of MxNet version of Densenet to Relay. https://github.com/apache/incubator-mxnet/blob/master/python/mxnet/gluon/model_zoo/vision/densenet.py
- tvm.relay.testing.densenet._make_dense_block(data, num_layers, bn_size, growth_rate, index)[源代码]#
Makes a block of dense layers of the specified size.
- tvm.relay.testing.densenet._make_dense_layer(data, growth_rate, bn_size, index)[源代码]#
Single densenet layer.
- tvm.relay.testing.densenet._make_dense_net(num_init_features, growth_rate, block_config, data_shape, data_dtype, bn_size=4, classes=1000)[源代码]#
Builds up a densenet.
- tvm.relay.testing.densenet._make_transition(data, num_output_features, index)[源代码]#
Transition between layers.
- tvm.relay.testing.densenet.get_workload(densenet_size=121, classes=1000, batch_size=4, image_shape=(3, 224, 224), dtype='float32')[源代码]#
Gets benchmark workload for densenet.
- densenet_sizeint, optional (default 121)
Parameter for the network size. The supported sizes are 121, 161, 169, and 201.
- classesint, optional (default 1000)
The number of classes.
- batch_sizeint, optional (detault 4)
The batch size for the network.
- image_shapeshape, optional (default (3, 224, 224))
The shape of the input data.
- dtypedata type, optional (default ‘float32’)
The data type of the input data.
- mod: tvm.IRModule
The relay module that contains a DenseNet network.
- paramsdict of str to NDArray
The benchmark paraeters.