SOTA代码
导航
SOTA代码#
物体检测|Object Detection#
Stereo R-CNN
HKUST-Aerial-Robotics/Stereo-RCNN -CVPR2019
研究机构 : 港科大Aerial Robotics Group和大疆
论文 : Stereo R-CNN based 3D Object Detection for Autonomous DrivingSimpleDet
tusimple/simpledet -SOTA on consumer grade hardware at large scale
研究机构 : 图森
论文 : SimpleDet: A Simple and Versatile Distributed Framework for Object Detection and Instance RecognitionPointPillars
traveller59/second.pytorch -SOTA for Birds Eye View Object Detection on KITTI Cyclists Moderate
研究机构 : nuTonomy(安波福下的公司)
论文 : PointPillars: Fast Encoders for Object Detection from Point Clouds,PointRCNN
sshaoshuai/PointRCNN -KITTI for 3D Object Detection (Cars)
: #2,Cars-Easy(AP:84.32%); #1,Cars-Moderate(AP:75.42%); #1,Cars-Hard(AP:67.86%)
研究机构 : 香港中文大学
论文 : PointRCNN: 3D Object Proposal Generation and Detection from Point Cloudsshkhr/BigDataCup18_Submission - IEEE International Conference On Big Data Cup 2018(2018年IEEE国际大数据杯会议的道路损伤检测和分类挑战),
研究机构 : 印度科学研究所
论文 : Road Damage Detection And Classification In Smartphone Captured Images Using Mask R-CNNComplex-YOLO
AI-liu/Complex-YOLO -
研究机构 : 法里奥、伊尔默瑙理工大学
论文:Complex-YOLO: Real-time 3D Object Detection on Point Cloudskujason/avod -
KITTI 3D Object Detection for cars
#2 Cars-Hard(AP:66.38%)
研究机构 : 滑铁卢大学工程学院机械与机电工程系
论文 : Joint 3D Proposal Generation and Object Detection from View AggregationPointNet
charlesq34/pointnet-SOTA(Object Localization & 3D Object Detection)
:Cars、Cyclists、Pedestrian
研究机构 : 斯坦福大学、Nuro公司、加州大学圣地亚哥分校
论文 : Frustum PointNets for 3D Object Detection from RGB-D DataSqueezeDet
BichenWuUCB/squeezeDet -SOTA for KITTI(2016)
研究机构 : 伯克利、DeepScale(专注于自动驾驶感知技术)
论文 : SqueezeDet: Unified, Small, Low Power Fully Convolutional Neural Networks for Real-Time Object Detection for Autonomous DrivingVoxelNet
charlesq34/pointnet -SOTA(Object Localization & 3D Object Detection)
:Cars、Cyclists、Pedestrian
研究机构 : 苹果公司
论文 : VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
分割|Segmentation#
LEDNet
xiaoyufenfei/LEDNet - 暂未released,Semantic Segmentation:Real-time(71FPS)
、Semantic Segmentation(Mean IoU 70.6%),ICIP 2019
研究机构 : 南京邮电大学、天普大学
论文 : LEDNet: A Lightweight Encoder-Decoder Network for Real-Time Semantic Segmentation,swiftnet
orsic/swiftnet - Real-Time Semantic Segmentation on Cityscapes #9,Semantic Segmentation(Mean IoU:75.5%);#2,Real-time(Mean IoU:75.5%)
;#3,Real-time(Frame:39.9 fps)
,CVPR2019
研究机构 : 萨格勒布大学 电气工程与计算学院
论文 : In Defense of Pre-trained ImageNet Architectures for Real-time Semantic Segmentation of Road-driving ImagesYangZhang4065/AdaptationSeg - SOTA for
Image-to-Image Translation
on SYNTHIA-to-Cityscapes
研究机构 : IEEE Member
论文 : A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban ScenesBiSeNet
ycszen/TorchSeg - Cityscapes:#2,Real-time(Frame:65.5 Fps
);#8 (Mean IoU 78.9%
)、CamVid:#2,Mean IoU 68.7%;ECCV 2018
研究机构 : 多谱信息处理技术国家级重点实验室、华中科技大学自动化学院、北大、旷视
论文 : BiSeNet: Bilateral Segmentation Network for Real-time Semantic SegmentationMSiam/TFSegmentation - Benchmarking Framework(Cityscapes dataset for urban scenes)
研究机构 : 阿尔伯塔大学、开罗大学
论文 : RTSeg: Real-time Semantic Segmentation Comparative StudyMultiNet
MarvinTeichmann/MultiNet - SOTA for KITTI(Road Segmentation)
研究机构 : 多伦多大学计算机科学、剑桥大学工程系、FZI研究中心、Uber ATG
论文 : MultiNet: Real-time Joint Semantic Reasoning for Autonomous Drivingbermanmaxim/LovaszSoftmax - Cityscapes:#1 for
Real-Time(76.9 fps)
、#16 for Mean IoU(63.06%),CVPR 2018
研究机构 : 鲁汶大学
论文 : The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks,BichenWuUCB/SqueezeSeg -
研究机构 : 伯克利
论文 : SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud,PSPNet
tensorflow/models和hszhao/PSPNet -SOTA in (Semantic Segmentation & Real-Time Semantic Segmentation)
,more detail,CVPR 2017
研究机构 : 香港中文大学、商汤
论文 : Pyramid Scene Parsing Network
传感器融合|Sensor Fusion#
HKUST-Aerial-Robotics/VINS-Mono - SOTA,IROS 2018,IMU和(单目)摄像头融合的校正方法,用来校准IMU和相机之间的时间偏移。
研究机构 : 港科大Aerial Robotics Group
论文 : Online Temporal Calibration for Monocular Visual-Inertial Systems,
决策系统|Decision Making#
xinleipan/VirtualtoReal-RL -在虚拟环境通过强化学习来训练无人驾驶
研究机构 : Berkley、清华大学、上海交通大学
论文 : Virtual to Real Reinforcement Learning for Autonomous Driving[非官方]marsauto/europilot和[非官方]SullyChen/Autopilot-TensorFlow
研究机构 : 英伟达
论文 : End to End Learning for Self-Driving Cars
运动规划|Motion Planer#
[非官方]Iftimie/ChauffeurNet - Waymo出品,通过模仿学习对无人车进行运动规划,全文中文翻译:知乎|每周一篇 & 无人驾驶
研究机构 : Waymo Research
论文 : ChauffeurNet: Learning to Drive by Imitating the Best and Synthesizing the Worst,