二次规划(QP)样条路径优化¶
Tip: 为了更好的展示本文档中的等式,我们建议使用者使用带有插件的Chrome浏览器,或者将Latex等式拷贝到在线编辑公式网站进行浏览。
二次规划(QP)+样条插值
1. 目标函数¶
1.1 获得路径长度¶
路径定义在station-lateral坐标系中。s的变化区间为从车辆当前位置点到默认路径的长度。
1.2 获得样条段¶
将路径划分为n段,每段路径用一个多项式来表示。
1.3 定义样条段函数¶
每个样条段 i 都有沿着参考线的累加距离\(d_i\)。每段的路径默认用5介多项式表示。
$$
l = f_i(s)
= a_{i0} + a_{i1} \cdot s + a_{i2} \cdot s^2 + a_{i3} \cdot s^3 + a_{i4} \cdot s^4 + a_{i5} \cdot s^5 (0 \leq s \leq d_{i})
$$
1.4 定义每个样条段优化目标函数¶
$$
cost = \sum_{i=1}^{n} \Big( w_1 \cdot \int\limits_{0}^{d_i} (f_i')^2(s) ds + w_2 \cdot \int\limits_{0}^{d_i} (f_i'')^2(s) ds + w_3 \cdot \int\limits_{0}^{d_i} (f_i^{\prime\prime\prime})^2(s) ds \Big)
$$
1.5 将开销(cost)函数转换为QP公式¶
QP公式:
$$
\begin{aligned}
minimize & \frac{1}{2} \cdot x^T \cdot H \cdot x + f^T \cdot x \\
s.t. \qquad & LB \leq x \leq UB \\
& A_{eq}x = b_{eq} \\
& Ax \geq b
\end{aligned}
$$
下面是将开销(cost)函数转换为QP公式的例子:
$$
f_i(s) =
\begin{vmatrix} 1 & s & s^2 & s^3 & s^4 & s^5 \end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
$$
且
$$
f_i'(s) =
\begin{vmatrix} 0 & 1 & 2s & 3s^2 & 4s^3 & 5s^4 \end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
$$
且
$$
f_i'(s)^2 =
\begin{vmatrix} a_{i0} & a_{i1} & a_{i2} & a_{i3} & a_{i4} & a_{i5} \end{vmatrix}
\cdot
\begin{vmatrix} 0 \\ 1 \\ 2s \\ 3s^2 \\ 4s^3 \\ 5s^4 \end{vmatrix}
\cdot
\begin{vmatrix} 0 & 1 & 2s & 3s^2 & 4s^3 & 5s^4 \end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
$$
然后得到,
$$
\int\limits_{0}^{d_i} f_i'(s)^2 ds =
\int\limits_{0}^{d_i}
\begin{vmatrix} a_{i0} & a_{i1} & a_{i2} & a_{i3} & a_{i4} & a_{i5} \end{vmatrix}
\cdot
\begin{vmatrix} 0 \\ 1 \\ 2s \\ 3s^2 \\ 4s^3 \\ 5s^4 \end{vmatrix}
\cdot
\begin{vmatrix} 0 & 1 & 2s & 3s^2 & 4s^3 & 5s^4 \end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix} ds
$$
从聚合函数中提取出常量得到,
$$
\int\limits_{0}^{d_i} f'(s)^2 ds =
\begin{vmatrix} a_{i0} & a_{i1} & a_{i2} & a_{i3} & a_{i4} & a_{i5} \end{vmatrix}
\cdot
\int\limits_{0}^{d_i}
\begin{vmatrix} 0 \\ 1 \\ 2s \\ 3s^2 \\ 4s^3 \\ 5s^4 \end{vmatrix}
\cdot
\begin{vmatrix} 0 & 1 & 2s & 3s^2 & 4s^3 & 5s^4 \end{vmatrix} ds
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
$$
$$
=\begin{vmatrix} a_{i0} & a_{i1} & a_{i2} & a_{i3} & a_{i4} & a_{i5} \end{vmatrix}
\cdot \int\limits_{0}^{d_i}
\begin{vmatrix}
0 & 0 &0&0&0&0\\
0 & 1 & 2s & 3s^2 & 4s^3 & 5s^4\\
0 & 2s & 4s^2 & 6s^3 & 8s^4 & 10s^5\\
0 & 3s^2 & 6s^3 & 9s^4 & 12s^5&15s^6 \\
0 & 4s^3 & 8s^4 &12s^5 &16s^6&20s^7 \\
0 & 5s^4 & 10s^5 & 15s^6 & 20s^7 & 25s^8
\end{vmatrix} ds
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
$$
最后得到,
$$
\int\limits_{0}^{d_i}
f'_i(s)^2 ds =\begin{vmatrix} a_{i0} & a_{i1} & a_{i2} & a_{i3} & a_{i4} & a_{i5} \end{vmatrix}
\cdot \begin{vmatrix}
0 & 0 & 0 & 0 &0&0\\
0 & d_i & d_i^2 & d_i^3 & d_i^4&d_i^5\\
0& d_i^2 & \frac{4}{3}d_i^3& \frac{6}{4}d_i^4 & \frac{8}{5}d_i^5&\frac{10}{6}d_i^6\\
0& d_i^3 & \frac{6}{4}d_i^4 & \frac{9}{5}d_i^5 & \frac{12}{6}d_i^6&\frac{15}{7}d_i^7\\
0& d_i^4 & \frac{8}{5}d_i^5 & \frac{12}{6}d_i^6 & \frac{16}{7}d_i^7&\frac{20}{8}d_i^8\\
0& d_i^5 & \frac{10}{6}d_i^6 & \frac{15}{7}d_i^7 & \frac{20}{8}d_i^8&\frac{25}{9}d_i^9
\end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
$$
请注意我们最后得到一个6介的矩阵来表示5介样条插值的衍生开销。 应用同样的推理方法可以得到2介,3介样条插值的衍生开销。
2 约束条件¶
2.1 初始点约束¶
假设第一个点为 (\(s_0\), \(l_0\)), (\(s_0\), \(l'_0\)) and (\(s_0\), \(l''_0\)),其中\(l_0\) , \(l'_0\) and \(l''_0\)表示横向的偏移,并且规划路径的起始点的第一,第二个点的衍生开销可以从\(f_i(s)\), \(f'_i(s)\), \(f_i(s)''\)计算得到。
将上述约束转换为QP约束等式,使用等式:
$$
A_{eq}x = b_{eq}
$$
下面是转换的具体步骤:
$$
f_i(s_0) =
\begin{vmatrix} 1 & s_0 & s_0^2 & s_0^3 & s_0^4&s_0^5 \end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5}\end{vmatrix} = l_0
$$
且
$$
f'_i(s_0) =
\begin{vmatrix} 0& 1 & 2s_0 & 3s_0^2 & 4s_0^3 &5 s_0^4 \end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix} = l'_0
$$
且
$$
f''_i(s_0) =
\begin{vmatrix} 0&0& 2 & 3\times2s_0 & 4\times3s_0^2 & 5\times4s_0^3 \end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix} = l''_0
$$
其中,i是包含\(s_0\)的样条段的索引值。
2.2 终点约束¶
和起始点相同,终点\((s_e, l_e)\) 也应当按照起始点的计算方法生成约束条件。
将起始点和终点组合在一起,得出约束等式为:
$$
\begin{vmatrix}
1 & s_0 & s_0^2 & s_0^3 & s_0^4&s_0^5 \\
0&1 & 2s_0 & 3s_0^2 & 4s_0^3 & 5s_0^4 \\
0& 0&2 & 3\times2s_0 & 4\times3s_0^2 & 5\times4s_0^3 \\
1 & s_e & s_e^2 & s_e^3 & s_e^4&s_e^5 \\
0&1 & 2s_e & 3s_e^2 & 4s_e^3 & 5s_e^4 \\
0& 0&2 & 3\times2s_e & 4\times3s_e^2 & 5\times4s_e^3
\end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
=
\begin{vmatrix}
l_0\\
l'_0\\
l''_0\\
l_e\\
l'_e\\
l''_e\\
\end{vmatrix}
$$
2.3 平滑节点约束¶
该约束的目的是使样条的节点更加平滑。假设两个段\(seg_k\) 和\(seg_{k+1}\)互相连接,且\(seg_k\)的累计值s为\(s_k\)。计算约束的等式为:
$$
f_k(s_k) = f_{k+1} (s_0)
$$
下面是计算的具体步骤:
$$
\begin{vmatrix}
1 & s_k & s_k^2 & s_k^3 & s_k^4&s_k^5 \\
\end{vmatrix}
\cdot
\begin{vmatrix}
a_{k0} \\ a_{k1} \\ a_{k2} \\ a_{k3} \\ a_{k4} \\ a_{k5}
\end{vmatrix}
=
\begin{vmatrix}
1 & s_{0} & s_{0}^2 & s_{0}^3 & s_{0}^4&s_{0}^5 \\
\end{vmatrix}
\cdot
\begin{vmatrix}
a_{k+1,0} \\ a_{k+1,1} \\ a_{k+1,2} \\ a_{k+1,3} \\ a_{k+1,4} \\ a_{k+1,5}
\end{vmatrix}
$$
然后
$$
\begin{vmatrix}
1 & s_k & s_k^2 & s_k^3 & s_k^4&s_k^5 & -1 & -s_{0} & -s_{0}^2 & -s_{0}^3 & -s_{0}^4&-s_{0}^5\\
\end{vmatrix}
\cdot
\begin{vmatrix}
a_{k0} \\ a_{k1} \\ a_{k2} \\ a_{k3} \\ a_{k4} \\ a_{k5} \\ a_{k+1,0} \\ a_{k+1,1} \\ a_{k+1,2} \\ a_{k+1,3} \\ a_{k+1,4} \\ a_{k+1,5}
\end{vmatrix}
= 0
$$
将\(s_0\) = 0代入等式。
同样地,可以为下述等式计算约束等式:
$$
f'_k(s_k) = f'_{k+1} (s_0)
\\
f''_k(s_k) = f''_{k+1} (s_0)
\\
f'''_k(s_k) = f'''_{k+1} (s_0)
$$
2.4 点采样边界约束¶
在路径上均匀的取样m个点,检查这些点上的障碍物边界。将这些约束转换为QP约束不等式,使用不等式:
$$
Ax \geq b
$$
首先基于道路宽度和周围的障碍物找到点 \((s_j, l_j)\)的下边界\(l_{lb,j}\),且\(j\in[0, m]\)。计算约束的不等式为:
$$
\begin{vmatrix}
1 & s_0 & s_0^2 & s_0^3 & s_0^4&s_0^5 \\
1 & s_1 & s_1^2 & s_1^3 & s_1^4&s_1^5 \\
...&...&...&...&...&... \\
1 & s_m & s_m^2 & s_m^3 & s_m^4&s_m^5 \\
\end{vmatrix} \cdot \begin{vmatrix}a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
\geq
\begin{vmatrix}
l_{lb,0}\\
l_{lb,1}\\
...\\
l_{lb,m}\\
\end{vmatrix}
$$
同样地,对上边界\(l_{ub,j}\),计算约束的不等式为:
$$
\begin{vmatrix}
-1 & -s_0 & -s_0^2 & -s_0^3 & -s_0^4&-s_0^5 \\
-1 & -s_1 & -s_1^2 & -s_1^3 & -s_1^4&-s_1^5 \\
...&...-&...&...&...&... \\
-1 & -s_m & -s_m^2 & -s_m^3 & -s_m^4&-s_m^5 \\
\end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
\geq
-1 \cdot
\begin{vmatrix}
l_{ub,0}\\
l_{ub,1}\\
...\\
l_{ub,m}\\
\end{vmatrix}
$$