QP-Spline-Path Optimizer¶
Tip: to read the equations in the document, you are recommended to use Chrome with a plugin or copy the latex equation to an online editor
Quadratic programming + Spline interpolation
1. Objective function¶
1.1 Get path length¶
Path is defined in station-lateral coordination system. The s range from vehicle’s current position to default planning path length.
1.2 Get spline segments¶
Split the path into n segments. each segment trajectory is defined by a polynomial.
1.3 Define function for each spline segment¶
Each segment i has accumulated distance
$$
l = f_i(s)
= a_{i0} + a_{i1} \cdot s + a_{i2} \cdot s^2 + a_{i3} \cdot s^3 + a_{i4} \cdot s^4 + a_{i5} \cdot s^5 (0 \leq s \leq d_{i})
$$
1.4 Define objective function of optimization for each segment¶
$$
cost = \sum_{i=1}^{n} \Big( w_1 \cdot \int\limits_{0}^{d_i} (f_i')^2(s) ds + w_2 \cdot \int\limits_{0}^{d_i} (f_i'')^2(s) ds + w_3 \cdot \int\limits_{0}^{d_i} (f_i^{\prime\prime\prime})^2(s) ds \Big)
$$
1.5 Convert the cost function to QP formulation¶
QP formulation:
$$
\begin{aligned}
minimize & \frac{1}{2} \cdot x^T \cdot H \cdot x + f^T \cdot x \\
s.t. \qquad & LB \leq x \leq UB \\
& A_{eq}x = b_{eq} \\
& Ax \geq b
\end{aligned}
$$
Below is the example for converting the cost function into the QP formulation.
$$
f_i(s) =
\begin{vmatrix} 1 & s & s^2 & s^3 & s^4 & s^5 \end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
$$
And
$$
f_i'(s) =
\begin{vmatrix} 0 & 1 & 2s & 3s^2 & 4s^3 & 5s^4 \end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
$$
And
$$
f_i'(s)^2 =
\begin{vmatrix} a_{i0} & a_{i1} & a_{i2} & a_{i3} & a_{i4} & a_{i5} \end{vmatrix}
\cdot
\begin{vmatrix} 0 \\ 1 \\ 2s \\ 3s^2 \\ 4s^3 \\ 5s^4 \end{vmatrix}
\cdot
\begin{vmatrix} 0 & 1 & 2s & 3s^2 & 4s^3 & 5s^4 \end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
$$
then we have,
$$
\int\limits_{0}^{d_i} f_i'(s)^2 ds =
\int\limits_{0}^{d_i}
\begin{vmatrix} a_{i0} & a_{i1} & a_{i2} & a_{i3} & a_{i4} & a_{i5} \end{vmatrix}
\cdot
\begin{vmatrix} 0 \\ 1 \\ 2s \\ 3s^2 \\ 4s^3 \\ 5s^4 \end{vmatrix}
\cdot
\begin{vmatrix} 0 & 1 & 2s & 3s^2 & 4s^3 & 5s^4 \end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix} ds
$$
extract the const outside the integration, we have,
$$
\int\limits_{0}^{d_i} f'(s)^2 ds =
\begin{vmatrix} a_{i0} & a_{i1} & a_{i2} & a_{i3} & a_{i4} & a_{i5} \end{vmatrix}
\cdot
\int\limits_{0}^{d_i}
\begin{vmatrix} 0 \\ 1 \\ 2s \\ 3s^2 \\ 4s^3 \\ 5s^4 \end{vmatrix}
\cdot
\begin{vmatrix} 0 & 1 & 2s & 3s^2 & 4s^3 & 5s^4 \end{vmatrix} ds
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
$$
$$
=\begin{vmatrix} a_{i0} & a_{i1} & a_{i2} & a_{i3} & a_{i4} & a_{i5} \end{vmatrix}
\cdot \int\limits_{0}^{d_i}
\begin{vmatrix}
0 & 0 &0&0&0&0\\
0 & 1 & 2s & 3s^2 & 4s^3 & 5s^4\\
0 & 2s & 4s^2 & 6s^3 & 8s^4 & 10s^5\\
0 & 3s^2 & 6s^3 & 9s^4 & 12s^5&15s^6 \\
0 & 4s^3 & 8s^4 &12s^5 &16s^6&20s^7 \\
0 & 5s^4 & 10s^5 & 15s^6 & 20s^7 & 25s^8
\end{vmatrix} ds
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
$$
Finally, we have
$$
\int\limits_{0}^{d_i}
f'_i(s)^2 ds =\begin{vmatrix} a_{i0} & a_{i1} & a_{i2} & a_{i3} & a_{i4} & a_{i5} \end{vmatrix}
\cdot \begin{vmatrix}
0 & 0 & 0 & 0 &0&0\\
0 & d_i & d_i^2 & d_i^3 & d_i^4&d_i^5\\
0& d_i^2 & \frac{4}{3}d_i^3& \frac{6}{4}d_i^4 & \frac{8}{5}d_i^5&\frac{10}{6}d_i^6\\
0& d_i^3 & \frac{6}{4}d_i^4 & \frac{9}{5}d_i^5 & \frac{12}{6}d_i^6&\frac{15}{7}d_i^7\\
0& d_i^4 & \frac{8}{5}d_i^5 & \frac{12}{6}d_i^6 & \frac{16}{7}d_i^7&\frac{20}{8}d_i^8\\
0& d_i^5 & \frac{10}{6}d_i^6 & \frac{15}{7}d_i^7 & \frac{20}{8}d_i^8&\frac{25}{9}d_i^9
\end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
$$
Please notice that we got a 6 x 6 matrix to represent the derivative cost of 5th order spline.
Similar deduction can also be used to calculate the cost of second and third order derivatives.
2 Constraints¶
2.1 The init point constraints¶
Assume that the first point is (
Convert those constraints into QP equality constraints, using:
$$
A_{eq}x = b_{eq}
$$
Below are the steps of conversion.
$$
f_i(s_0) =
\begin{vmatrix} 1 & s_0 & s_0^2 & s_0^3 & s_0^4&s_0^5 \end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5}\end{vmatrix} = l_0
$$
And
$$
f'_i(s_0) =
\begin{vmatrix} 0& 1 & 2s_0 & 3s_0^2 & 4s_0^3 &5 s_0^4 \end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix} = l'_0
$$
And
$$
f''_i(s_0) =
\begin{vmatrix} 0&0& 2 & 3\times2s_0 & 4\times3s_0^2 & 5\times4s_0^3 \end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix} = l''_0
$$
where i is the index of the segment that contains the
2.2 The end point constraints¶
Similar to the init point, the end point
Combine the init point and end point, and show the equality constraint as:
$$
\begin{vmatrix}
1 & s_0 & s_0^2 & s_0^3 & s_0^4&s_0^5 \\
0&1 & 2s_0 & 3s_0^2 & 4s_0^3 & 5s_0^4 \\
0& 0&2 & 3\times2s_0 & 4\times3s_0^2 & 5\times4s_0^3 \\
1 & s_e & s_e^2 & s_e^3 & s_e^4&s_e^5 \\
0&1 & 2s_e & 3s_e^2 & 4s_e^3 & 5s_e^4 \\
0& 0&2 & 3\times2s_e & 4\times3s_e^2 & 5\times4s_e^3
\end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
=
\begin{vmatrix}
l_0\\
l'_0\\
l''_0\\
l_e\\
l'_e\\
l''_e\\
\end{vmatrix}
$$
2.3 Joint smoothness constraints¶
This constraint is designed to smooth the spline joint. Assume two segments
$$
f_k(s_k) = f_{k+1} (s_0)
$$
Below are the steps of the calculation.
$$
\begin{vmatrix}
1 & s_k & s_k^2 & s_k^3 & s_k^4&s_k^5 \\
\end{vmatrix}
\cdot
\begin{vmatrix}
a_{k0} \\ a_{k1} \\ a_{k2} \\ a_{k3} \\ a_{k4} \\ a_{k5}
\end{vmatrix}
=
\begin{vmatrix}
1 & s_{0} & s_{0}^2 & s_{0}^3 & s_{0}^4&s_{0}^5 \\
\end{vmatrix}
\cdot
\begin{vmatrix}
a_{k+1,0} \\ a_{k+1,1} \\ a_{k+1,2} \\ a_{k+1,3} \\ a_{k+1,4} \\ a_{k+1,5}
\end{vmatrix}
$$
Then
$$
\begin{vmatrix}
1 & s_k & s_k^2 & s_k^3 & s_k^4&s_k^5 & -1 & -s_{0} & -s_{0}^2 & -s_{0}^3 & -s_{0}^4&-s_{0}^5\\
\end{vmatrix}
\cdot
\begin{vmatrix}
a_{k0} \\ a_{k1} \\ a_{k2} \\ a_{k3} \\ a_{k4} \\ a_{k5} \\ a_{k+1,0} \\ a_{k+1,1} \\ a_{k+1,2} \\ a_{k+1,3} \\ a_{k+1,4} \\ a_{k+1,5}
\end{vmatrix}
= 0
$$
Use
Similarly calculate the equality constraints for:
$$
f'_k(s_k) = f'_{k+1} (s_0)
\\
f''_k(s_k) = f''_{k+1} (s_0)
\\
f'''_k(s_k) = f'''_{k+1} (s_0)
$$
2.4 Sampled points for boundary constraint¶
Evenly sample m points along the path, and check the obstacle boundary at those points. Convert the constraint into QP inequality constraints, using:
$$
Ax \geq b
$$
First find the lower boundary
$$
\begin{vmatrix}
1 & s_0 & s_0^2 & s_0^3 & s_0^4&s_0^5 \\
1 & s_1 & s_1^2 & s_1^3 & s_1^4&s_1^5 \\
...&...&...&...&...&... \\
1 & s_m & s_m^2 & s_m^3 & s_m^4&s_m^5 \\
\end{vmatrix} \cdot \begin{vmatrix}a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
\geq
\begin{vmatrix}
l_{lb,0}\\
l_{lb,1}\\
...\\
l_{lb,m}\\
\end{vmatrix}
$$
Similarly, for the upper boundary
$$
\begin{vmatrix}
-1 & -s_0 & -s_0^2 & -s_0^3 & -s_0^4&-s_0^5 \\
-1 & -s_1 & -s_1^2 & -s_1^3 & -s_1^4&-s_1^5 \\
...&...-&...&...&...&... \\
-1 & -s_m & -s_m^2 & -s_m^3 & -s_m^4&-s_m^5 \\
\end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
\geq
-1 \cdot
\begin{vmatrix}
l_{ub,0}\\
l_{ub,1}\\
...\\
l_{ub,m}\\
\end{vmatrix}
$$