QP-Spline-Path Optimizer

Tip: to read the equations in the document, you are recommended to use Chrome with a plugin or copy the latex equation to an online editor

Quadratic programming + Spline interpolation

1. Objective function

1.1 Get path length

Path is defined in station-lateral coordination system. The s range from vehicle’s current position to default planning path length.

1.2 Get spline segments

Split the path into n segments. each segment trajectory is defined by a polynomial.

1.3 Define function for each spline segment

Each segment i has accumulated distance di along reference line. The trajectory for the segment is defined as a polynomial of degree five by default.

$$
l = f_i(s)
  = a_{i0} + a_{i1} \cdot s + a_{i2} \cdot s^2 + a_{i3} \cdot s^3 + a_{i4} \cdot s^4 + a_{i5} \cdot s^5        (0 \leq s \leq d_{i})
$$

1.4 Define objective function of optimization for each segment

$$
cost = \sum_{i=1}^{n} \Big( w_1 \cdot \int\limits_{0}^{d_i} (f_i')^2(s) ds + w_2 \cdot \int\limits_{0}^{d_i} (f_i'')^2(s) ds + w_3 \cdot \int\limits_{0}^{d_i} (f_i^{\prime\prime\prime})^2(s) ds \Big)
$$

1.5 Convert the cost function to QP formulation

QP formulation:

$$
\begin{aligned}
minimize  & \frac{1}{2}  \cdot x^T \cdot H \cdot x  + f^T \cdot x \\
s.t. \qquad & LB \leq x \leq UB \\
      & A_{eq}x = b_{eq} \\
      & Ax \geq b
\end{aligned}
$$

Below is the example for converting the cost function into the QP formulation.

$$
f_i(s) =
\begin{vmatrix} 1 & s & s^2 & s^3 & s^4 & s^5 \end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}   
$$

And

$$
f_i'(s) =
\begin{vmatrix} 0 & 1 & 2s & 3s^2 & 4s^3 & 5s^4 \end{vmatrix}
\cdot
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}   
$$

And

$$
f_i'(s)^2 =
\begin{vmatrix} a_{i0} & a_{i1} & a_{i2} & a_{i3} & a_{i4} & a_{i5}  \end{vmatrix} 
\cdot 
\begin{vmatrix} 0 \\ 1 \\ 2s \\ 3s^2 \\ 4s^3 \\ 5s^4 \end{vmatrix} 
\cdot 
\begin{vmatrix} 0 & 1 & 2s & 3s^2 & 4s^3 & 5s^4 \end{vmatrix} 
\cdot 
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5}  \end{vmatrix}
$$

then we have,

$$
\int\limits_{0}^{d_i} f_i'(s)^2 ds =
\int\limits_{0}^{d_i}
\begin{vmatrix} a_{i0} & a_{i1} & a_{i2} & a_{i3} & a_{i4} & a_{i5} \end{vmatrix} 
\cdot  
\begin{vmatrix} 0 \\ 1 \\ 2s \\ 3s^2 \\ 4s^3 \\ 5s^4 \end{vmatrix} 
\cdot 
\begin{vmatrix} 0 & 1 & 2s & 3s^2 & 4s^3 & 5s^4 \end{vmatrix} 
\cdot 
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5}  \end{vmatrix} ds
$$

extract the const outside the integration, we have,

$$
\int\limits_{0}^{d_i} f'(s)^2 ds =
\begin{vmatrix} a_{i0} & a_{i1} & a_{i2} & a_{i3} & a_{i4} & a_{i5} \end{vmatrix} 
\cdot 
\int\limits_{0}^{d_i}  
\begin{vmatrix} 0 \\ 1 \\ 2s \\ 3s^2 \\ 4s^3 \\ 5s^4 \end{vmatrix} 
\cdot 
\begin{vmatrix} 0 & 1 & 2s & 3s^2 & 4s^3 & 5s^4 \end{vmatrix} ds 
\cdot 
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5}  \end{vmatrix}
$$
$$
=\begin{vmatrix} a_{i0} & a_{i1} & a_{i2} & a_{i3} & a_{i4} & a_{i5} \end{vmatrix} 
\cdot \int\limits_{0}^{d_i}
\begin{vmatrix} 
0  & 0 &0&0&0&0\\ 
0 & 1 & 2s & 3s^2 & 4s^3 & 5s^4\\
0 & 2s & 4s^2 & 6s^3 & 8s^4 & 10s^5\\
0 & 3s^2 &  6s^3 & 9s^4 & 12s^5&15s^6 \\
0 & 4s^3 & 8s^4 &12s^5 &16s^6&20s^7 \\
0 & 5s^4 & 10s^5 & 15s^6 & 20s^7 & 25s^8 
\end{vmatrix} ds 
\cdot 
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
$$

Finally, we have

$$
\int\limits_{0}^{d_i} 
f'_i(s)^2 ds =\begin{vmatrix} a_{i0} & a_{i1} & a_{i2} & a_{i3} & a_{i4} & a_{i5} \end{vmatrix} 
\cdot \begin{vmatrix} 
0 & 0 & 0 & 0 &0&0\\ 
0 & d_i & d_i^2 & d_i^3 & d_i^4&d_i^5\\
0& d_i^2 & \frac{4}{3}d_i^3& \frac{6}{4}d_i^4 & \frac{8}{5}d_i^5&\frac{10}{6}d_i^6\\
0& d_i^3 & \frac{6}{4}d_i^4 & \frac{9}{5}d_i^5 & \frac{12}{6}d_i^6&\frac{15}{7}d_i^7\\
0& d_i^4 & \frac{8}{5}d_i^5 & \frac{12}{6}d_i^6 & \frac{16}{7}d_i^7&\frac{20}{8}d_i^8\\
0& d_i^5 & \frac{10}{6}d_i^6 & \frac{15}{7}d_i^7 & \frac{20}{8}d_i^8&\frac{25}{9}d_i^9
\end{vmatrix} 
\cdot 
\begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix}
$$

Please notice that we got a 6 x 6 matrix to represent the derivative cost of 5th order spline.

Similar deduction can also be used to calculate the cost of second and third order derivatives.

2 Constraints

2.1 The init point constraints

Assume that the first point is (s0, l0), (s0, l0) and (s0, l0), where l0 , l0 and l0 is the lateral offset and its first and second derivatives on the init point of planned path, and are calculated from fi(s), fi(s), and fi(s).

Convert those constraints into QP equality constraints, using:

$$
A_{eq}x = b_{eq}
$$

Below are the steps of conversion.

$$
f_i(s_0) = 
\begin{vmatrix} 1 & s_0 & s_0^2 & s_0^3 & s_0^4&s_0^5 \end{vmatrix} 
\cdot 
\begin{vmatrix}  a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5}\end{vmatrix} = l_0
$$

And

$$
f'_i(s_0) = 
\begin{vmatrix} 0& 1 & 2s_0 & 3s_0^2 & 4s_0^3 &5 s_0^4 \end{vmatrix} 
\cdot 
\begin{vmatrix}  a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix} = l'_0
$$

And

$$
f''_i(s_0) = 
\begin{vmatrix} 0&0& 2 & 3\times2s_0 & 4\times3s_0^2 & 5\times4s_0^3  \end{vmatrix} 
\cdot 
\begin{vmatrix}  a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix} = l''_0
$$

where i is the index of the segment that contains the s0.

2.2 The end point constraints

Similar to the init point, the end point (se,le) is known and should produce the same constraint as described in the init point calculations.

Combine the init point and end point, and show the equality constraint as:

$$
\begin{vmatrix} 
 1 & s_0 & s_0^2 & s_0^3 & s_0^4&s_0^5 \\
 0&1 & 2s_0 & 3s_0^2 & 4s_0^3 & 5s_0^4 \\
 0& 0&2 & 3\times2s_0 & 4\times3s_0^2 & 5\times4s_0^3  \\
 1 & s_e & s_e^2 & s_e^3 & s_e^4&s_e^5 \\
 0&1 & 2s_e & 3s_e^2 & 4s_e^3 & 5s_e^4 \\
 0& 0&2 & 3\times2s_e & 4\times3s_e^2 & 5\times4s_e^3  
 \end{vmatrix} 
 \cdot 
 \begin{vmatrix}  a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{vmatrix} 
 = 
 \begin{vmatrix}
 l_0\\
 l'_0\\
 l''_0\\
 l_e\\
 l'_e\\
 l''_e\\
 \end{vmatrix}
$$

2.3 Joint smoothness constraints

This constraint is designed to smooth the spline joint. Assume two segments segk and segk+1 are connected, and the accumulated s of segment segk is sk. Calculate the constraint equation as:

$$
f_k(s_k) = f_{k+1} (s_0)
$$

Below are the steps of the calculation.

$$
\begin{vmatrix} 
 1 & s_k & s_k^2 & s_k^3 & s_k^4&s_k^5 \\
 \end{vmatrix} 
 \cdot 
 \begin{vmatrix} 
 a_{k0} \\ a_{k1} \\ a_{k2} \\ a_{k3} \\ a_{k4} \\ a_{k5} 
 \end{vmatrix} 
 = 
\begin{vmatrix} 
 1 & s_{0} & s_{0}^2 & s_{0}^3 & s_{0}^4&s_{0}^5 \\
 \end{vmatrix} 
 \cdot 
 \begin{vmatrix} 
 a_{k+1,0} \\ a_{k+1,1} \\ a_{k+1,2} \\ a_{k+1,3} \\ a_{k+1,4} \\ a_{k+1,5} 
 \end{vmatrix}
$$

Then

$$
\begin{vmatrix} 
 1 & s_k & s_k^2 & s_k^3 & s_k^4&s_k^5 &  -1 & -s_{0} & -s_{0}^2 & -s_{0}^3 & -s_{0}^4&-s_{0}^5\\
 \end{vmatrix} 
 \cdot 
 \begin{vmatrix} 
 a_{k0} \\ a_{k1} \\ a_{k2} \\ a_{k3} \\ a_{k4} \\ a_{k5} \\ a_{k+1,0} \\ a_{k+1,1} \\ a_{k+1,2} \\ a_{k+1,3} \\ a_{k+1,4} \\ a_{k+1,5}  
 \end{vmatrix} 
 = 0
$$

Use s0 = 0 in the equation.

Similarly calculate the equality constraints for:

$$
f'_k(s_k) = f'_{k+1} (s_0)
\\
f''_k(s_k) = f''_{k+1} (s_0)
\\
f'''_k(s_k) = f'''_{k+1} (s_0)
$$

2.4 Sampled points for boundary constraint

Evenly sample m points along the path, and check the obstacle boundary at those points. Convert the constraint into QP inequality constraints, using:

$$
Ax \geq b
$$

First find the lower boundary llb,j at those points (sj,lj) and j[0,m] based on the road width and surrounding obstacles. Calculate the inequality constraints as:

$$
\begin{vmatrix} 
 1 & s_0 & s_0^2 & s_0^3 & s_0^4&s_0^5 \\
  1 & s_1 & s_1^2 & s_1^3 & s_1^4&s_1^5 \\
 ...&...&...&...&...&... \\
 1 & s_m & s_m^2 & s_m^3 & s_m^4&s_m^5 \\
 \end{vmatrix} \cdot \begin{vmatrix}a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5}  \end{vmatrix} 
 \geq 
 \begin{vmatrix}
 l_{lb,0}\\
 l_{lb,1}\\
 ...\\
 l_{lb,m}\\
 \end{vmatrix}
$$

Similarly, for the upper boundary lub,j, calculate the inequality constraints as:

$$
\begin{vmatrix} 
 -1 & -s_0 & -s_0^2 & -s_0^3 & -s_0^4&-s_0^5 \\
  -1 & -s_1 & -s_1^2 & -s_1^3 & -s_1^4&-s_1^5 \\
 ...&...-&...&...&...&... \\
 -1 & -s_m & -s_m^2 & -s_m^3 & -s_m^4&-s_m^5 \\
 \end{vmatrix} 
 \cdot 
 \begin{vmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5}  \end{vmatrix} 
 \geq
 -1 \cdot
 \begin{vmatrix}
 l_{ub,0}\\
 l_{ub,1}\\
 ...\\
 l_{ub,m}\\
 \end{vmatrix}
$$