NumPy#
[NumPy] 是 Python 中科学计算的基础包。它是一个 Python 库,提供了多维数组对象、各种派生对象(如掩码数组和矩阵),以及一系列用于快速操作数组的例程,包括数学运算、逻辑运算、形状操作、排序、选择、输入输出、离散傅里叶变换、基本线性代数、基本统计操作、随机模拟等。
- 什么是 NumPy?
- NumPy:初学者的绝对基础
- 数组创建
- 对
ndarrays
的索引 - Importing data with
genfromtxt()
- 广播
- 拷贝与视图
- Working with Arrays of Strings And Bytes
- Structured arrays
- Introduction
- Structured datatypes
- Indexing and assignment to structured arrays
- Record arrays
- Recarray helper functions
append_fields()
apply_along_fields()
assign_fields_by_name()
drop_fields()
find_duplicates()
flatten_descr()
get_fieldstructure()
get_names()
get_names_flat()
join_by()
merge_arrays()
rec_append_fields()
rec_drop_fields()
rec_join()
recursive_fill_fields()
rename_fields()
repack_fields()
require_fields()
stack_arrays()
structured_to_unstructured()
unstructured_to_structured()
- Recarray helper functions
- Writing custom array containers
- 与 NumPy 的互操作性
- Subclassing ndarray
- Introduction
- View casting
- Creating new from template
- Relationship of view casting and new-from-template
- Implications for subclassing
- Simple example - adding an extra attribute to ndarray
- Slightly more realistic example - attribute added to existing array
__array_ufunc__
for ufuncs__array_wrap__
for ufuncs and other functions- Extra gotchas - custom
__del__
methods and ndarray.base - Subclassing and downstream compatibility
- NumPy 教程
- Determining Moore’s Law with real data in NumPy
- Saving and sharing your NumPy arrays
- What you’ll learn
- What you’ll do
- What you’ll need
- Create your arrays
- Save your arrays with NumPy’s
savez
- Remove the saved arrays and load them back with NumPy’s
load
- Reassign the NpzFile arrays to
x
andy
- Success
- Another option: saving to human-readable csv
- Rearrange the data into a single 2D array
- Save the data to csv file using
savetxt
- Our arrays as a csv file
- Success, but remember your types
- Wrapping up
- Analyzing the impact of the lockdown on air quality in Delhi, India
- Deep learning on MNIST
- Deep reinforcement learning with Pong from pixels
- Masked Arrays
- Plotting Fractals
- Determining Static Equilibrium in NumPy
- Linear algebra on n-dimensional arrays
- X-ray image processing