内置类型¶
以下部分描述了解释器中内置的标准类型。
主要内置类型有数字、序列、映射、类、实例和异常。
有些多项集类是可变的。 它们用于添加、移除或重排其成员的方法将原地执行,并不返回特定的项,绝对不会返回多项集实例自身而是返回 None
。
有些操作受多种对象类型的支持;特别地,实际上所有对象都可以比较是否相等、检测逻辑值,以及转换为字符串(使用 repr()
函数或略有差异的 str()
函数)。 后一个函数是在对象由 print()
函数输出时被隐式地调用的。
逻辑值检测¶
任何对象都可以进行逻辑值的检测,以便在 if
或 while
作为条件或是作为下文所述布尔运算的操作数来使用。
一个对象在默认情况下均被视为真值,除非当该对象被调用时其所属类定义了 __bool__()
方法且返回 False
或是定义了 __len__()
方法且返回零。 1 下面基本完整地列出了会被视为假值的内置对象:
被定义为假值的常量:
None
和False
。任何数值类型的零:
0
,0.0
,0j
,Decimal(0)
,Fraction(0, 1)
空的序列和多项集:
''
,()
,[]
,{}
,set()
,range(0)
产生布尔值结果的运算和内置函数总是返回 0
或 False
作为假值,1
或 True
作为真值,除非另行说明。 (重要例外:布尔运算 or
和 and
总是返回其中一个操作数。)
布尔运算 — and
, or
, not
¶
这些属于布尔运算,按优先级升序排列:
运算 |
结果: |
备注 |
---|---|---|
|
if x is false, then y, else x |
(1) |
|
if x is false, then x, else y |
(2) |
|
if x is false, then |
(3) |
注释:
这是个短路运算符,因此只有在第一个参数为假值时才会对第二个参数求值。
这是个短路运算符,因此只有在第一个参数为真值时才会对第二个参数求值。
not
的优先级比非布尔运算符低,因此not a == b
会被解读为not (a == b)
而a == not b
会引发语法错误。
比较运算¶
在 Python 中有八种比较运算符。 它们的优先级相同(比布尔运算的优先级高)。 比较运算可以任意串连;例如,x < y <= z
等价于 x < y and y <= z
,前者的不同之处在于 y 只被求值一次(但在两种情况下当 x < y
结果为假值时 z 都不会被求值)。
此表格汇总了比较运算:
运算 |
含意 |
---|---|
|
严格小于 |
|
小于或等于 |
|
严格大于 |
|
大于或等于 |
|
等于 |
|
不等于 |
|
对象标识 |
|
否定的对象标识 |
除不同的数字类型外,不同类型的对象不能进行相等比较。==
运算符总有定义,但对于某些对象类型(例如,类对象),它等于 is
。其他 <
、<=
、>
和 >=
运算符仅在有意义的地方定义。例如,当参与比较的参数之一为复数时,它们会抛出 TypeError
异常。
Non-identical instances of a class normally compare as non-equal unless the
class defines the __eq__()
method.
Instances of a class cannot be ordered with respect to other instances of the
same class, or other types of object, unless the class defines enough of the
methods __lt__()
, __le__()
, __gt__()
, and
__ge__()
(in general, __lt__()
and
__eq__()
are sufficient, if you want the conventional meanings of the
comparison operators).
is
和 is not
运算符无法自定义;并且它们可以被应用于任意两个对象而不会引发异常。
还有两种具有相同语法优先级的运算 in
和 not in
,它们被 iterable 或实现了 __contains__()
方法的类型所支持。
数字类型 — int
, float
, complex
¶
There are three distinct numeric types: integers, floating
point numbers, and complex numbers. In addition, Booleans are a
subtype of integers. Integers have unlimited precision. Floating point
numbers are usually implemented using double in C; information
about the precision and internal representation of floating point
numbers for the machine on which your program is running is available
in sys.float_info
. Complex numbers have a real and imaginary
part, which are each a floating point number. To extract these parts
from a complex number z, use z.real
and z.imag
. (The standard
library includes the additional numeric types fractions.Fraction
, for
rationals, and decimal.Decimal
, for floating-point numbers with
user-definable precision.)
数字是由数字字面值或内置函数与运算符的结果来创建的。 不带修饰的整数字面值(包括十六进制、八进制和二进制数)会生成整数。 包含小数点或幂运算符的数字字面值会生成浮点数。 在数字字面值末尾加上 'j'
或 'J'
会生成虚数(实部为零的复数),你可以将其与整数或浮点数相加来得到具有实部和虚部的复数。
Python 完全支持混合运算:当一个二元算术运算符的操作数有不同数值类型时,”较窄”类型的操作数会拓宽到另一个操作数的类型,其中整数比浮点数窄,浮点数比复数窄。不同类型的数字之间的比较,同比较这些数字的精确值一样。2
构造函数 int()
、 float()
和 complex()
可以用来构造特定类型的数字。
所有数字类型(复数除外)都支持下列运算(有关运算优先级,请参阅:运算符优先级):
运算 |
结果: |
备注 |
完整文档 |
---|---|---|---|
|
x 和 y 的和 |
||
|
x 和 y 的差 |
||
|
x 和 y 的乘积 |
||
|
x 和 y 的商 |
||
|
x 和 y 的商数 |
(1) |
|
|
|
(2) |
|
|
x 取反 |
||
|
x 不变 |
||
|
x 的绝对值或大小 |
||
|
将 x 转换为整数 |
(3)(6) |
|
|
将 x 转换为浮点数 |
(4)(6) |
|
|
一个带有实部 re 和虚部 im 的复数。im 默认为0。 |
(6) |
|
|
复数 c 的共轭 |
||
|
|
(2) |
|
|
x 的 y 次幂 |
(5) |
|
|
x 的 y 次幂 |
(5) |
注释:
也称为整数除法。 结果值是一个整数,但结果的类型不一定是 int。 运算结果总是向负无穷的方向舍入:
1//2
为0
,(-1)//2
为-1
,1//(-2)
为-1
而(-1)//(-2)
为0
。不可用于复数。 而应在适当条件下使用
abs()
转换为浮点数。从浮点数转换为整数会被舍入或是像在 C 语言中一样被截断;请参阅
math.floor()
和math.ceil()
函数查看转换的完整定义。float 也接受字符串 “nan” 和附带可选前缀 “+” 或 “-” 的 “inf” 分别表示非数字 (NaN) 以及正或负无穷。
Python 将
pow(0, 0)
和0 ** 0
定义为1
,这是编程语言的普遍做法。接受的数字字面值包括数码
0
到9
或任何等效的 Unicode 字符(具有Nd
特征属性的代码点)。See https://www.unicode.org/Public/15.0.0/ucd/extracted/DerivedNumericType.txt for a complete list of code points with the
Nd
property.
所有 numbers.Real
类型 (int
和 float
) 还包括下列运算:
运算 |
结果: |
---|---|
x 截断为 |
|
x 舍入到 n 位小数,半数值会舍入到偶数。 如果省略 n,则默认为 0。 |
|
<= x 的最大 |
|
>= x 的最小 |
整数类型的按位运算¶
按位运算只对整数有意义。 计算按位运算的结果,就相当于使用无穷多个二进制符号位对二的补码执行操作。
二进制按位运算的优先级全都低于数字运算,但又高于比较运算;一元运算 ~
具有与其他一元算术运算 (+
and -
) 相同的优先级。
此表格是以优先级升序排序的按位运算列表:
运算 |
结果: |
备注 |
---|---|---|
|
x 和 y 按位 或 |
(4) |
|
x 和 y 按位 异或 |
(4) |
|
x 和 y 按位 与 |
(4) |
|
x 左移 n 位 |
(1)(2) |
|
x 右移 n 位 |
(1)(3) |
|
x 逐位取反 |
注释:
负的移位数是非法的,会导致引发
ValueError
。左移 n 位等价于乘以
pow(2, n)
。右移 n 位等价于除以
pow(2, n)
,作向下取整除法。使用带有至少一个额外符号扩展位的有限个二进制补码表示(有效位宽度为
1 + max(x.bit_length(), y.bit_length())
或以上)执行这些计算就足以获得相当于有无数个符号位时的同样结果。
整数类型的附加方法¶
int 类型实现了 numbers.Integral
abstract base class。 此外,它还提供了其他几个方法:
- int.bit_length()¶
返回以二进制表示一个整数所需要的位数,不包括符号位和前面的零:
>>> n = -37 >>> bin(n) '-0b100101' >>> n.bit_length() 6
更准确地说,如果
x
非零,则x.bit_length()
是使得2**(k-1) <= abs(x) < 2**k
的唯一正整数k
。 同样地,当abs(x)
小到足以具有正确的舍入对数时,则k = 1 + int(log(abs(x), 2))
。 如果x
为零,则x.bit_length()
返回0
。等价于:
def bit_length(self): s = bin(self) # binary representation: bin(-37) --> '-0b100101' s = s.lstrip('-0b') # remove leading zeros and minus sign return len(s) # len('100101') --> 6
3.1 新版功能.
- int.bit_count()¶
返回整数的绝对值的二进制表示中 1 的个数。也被称为 population count。示例:
>>> n = 19 >>> bin(n) '0b10011' >>> n.bit_count() 3 >>> (-n).bit_count() 3
等价于:
def bit_count(self): return bin(self).count("1")
3.10 新版功能.
- int.to_bytes(length=1, byteorder='big', *, signed=False)¶
返回表示一个整数的字节数组。
>>> (1024).to_bytes(2, byteorder='big') b'\x04\x00' >>> (1024).to_bytes(10, byteorder='big') b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00' >>> (-1024).to_bytes(10, byteorder='big', signed=True) b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00' >>> x = 1000 >>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little') b'\xe8\x03'
The integer is represented using length bytes, and defaults to 1. An
OverflowError
is raised if the integer is not representable with the given number of bytes.The byteorder argument determines the byte order used to represent the integer, and defaults to
"big"
. If byteorder is"big"
, the most significant byte is at the beginning of the byte array. If byteorder is"little"
, the most significant byte is at the end of the byte array.signed 参数确定是否使用二的补码来表示整数。 如果 signed 为
False
并且给出的是负整数,则会引发OverflowError
。 signed 的默认值为False
。The default values can be used to conveniently turn an integer into a single byte object. However, when using the default arguments, don’t try to convert a value greater than 255 or you’ll get an
OverflowError
:>>> (65).to_bytes() b'A'
等价于:
def to_bytes(n, length=1, byteorder='big', signed=False): if byteorder == 'little': order = range(length) elif byteorder == 'big': order = reversed(range(length)) else: raise ValueError("byteorder must be either 'little' or 'big'") return bytes((n >> i*8) & 0xff for i in order)
3.2 新版功能.
在 3.11 版更改: Added default argument values for
length
andbyteorder
.
- classmethod int.from_bytes(bytes, byteorder='big', *, signed=False)¶
返回由给定字节数组所表示的整数。
>>> int.from_bytes(b'\x00\x10', byteorder='big') 16 >>> int.from_bytes(b'\x00\x10', byteorder='little') 4096 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=True) -1024 >>> int.from_bytes(b'\xfc\x00', byteorder='big', signed=False) 64512 >>> int.from_bytes([255, 0, 0], byteorder='big') 16711680
bytes 参数必须为一个 bytes-like object 或是生成字节的可迭代对象。
The byteorder argument determines the byte order used to represent the integer, and defaults to
"big"
. If byteorder is"big"
, the most significant byte is at the beginning of the byte array. If byteorder is"little"
, the most significant byte is at the end of the byte array. To request the native byte order of the host system, usesys.byteorder
as the byte order value.signed 参数指明是否使用二的补码来表示整数。
等价于:
def from_bytes(bytes, byteorder='big', signed=False): if byteorder == 'little': little_ordered = list(bytes) elif byteorder == 'big': little_ordered = list(reversed(bytes)) else: raise ValueError("byteorder must be either 'little' or 'big'") n = sum(b << i*8 for i, b in enumerate(little_ordered)) if signed and little_ordered and (little_ordered[-1] & 0x80): n -= 1 << 8*len(little_ordered) return n
3.2 新版功能.
在 3.11 版更改: Added default argument value for
byteorder
.
- int.as_integer_ratio()¶
返回一对整数,其比率正好等于原整数并且分母为正数。 整数的比率总是用这个整数本身作为分子,
1
作为分母。3.8 新版功能.
浮点类型的附加方法¶
float 类型实现了 numbers.Real
abstract base class。 float 还具有以下附加方法。
- float.as_integer_ratio()¶
返回一对整数,其比率正好等于原浮点数并且分母为正数。 无穷大会引发
OverflowError
而 NaN 则会引发ValueError
。
- float.is_integer()¶
如果 float 实例可用有限位整数表示则返回
True
,否则返回False
:>>> (-2.0).is_integer() True >>> (3.2).is_integer() False
两个方法均支持与十六进制数字符串之间的转换。 由于 Python 浮点数在内部存储为二进制数,因此浮点数与 十进制数 字符串之间的转换往往会导致微小的舍入错误。 而十六进制数字符串却允许精确地表示和描述浮点数。 这在进行调试和数值工作时非常有用。
- float.hex()¶
以十六进制字符串的形式返回一个浮点数表示。 对于有限浮点数,这种表示法将总是包含前导的
0x
和尾随的p
加指数。
- classmethod float.fromhex(s)¶
返回以十六进制字符串 s 表示的浮点数的类方法。 字符串 s 可以带有前导和尾随的空格。
请注意 float.hex()
是实例方法,而 float.fromhex()
是类方法。
十六进制字符串采用的形式为:
[sign] ['0x'] integer ['.' fraction] ['p' exponent]
可选的 sign
可以是 +
或 -
,integer
和 fraction
是十六进制数码组成的字符串,exponent
是带有可选前导符的十进制整数。 大小写没有影响,在 integer 或 fraction 中必须至少有一个十六进制数码。 此语法类似于 C99 标准的 6.4.4.2 小节中所描述的语法,也是 Java 1.5 以上所使用的语法。 特别地,float.hex()
的输出可以用作 C 或 Java 代码中的十六进制浮点数字面值,而由 C 的 %a
格式字符或 Java 的 Double.toHexString
所生成的十六进制数字符串由为 float.fromhex()
所接受。
请注意 exponent 是十进制数而非十六进制数,它给出要与系数相乘的 2 的幂次。 例如,十六进制数字符串 0x3.a7p10
表示浮点数 (3 + 10./16 + 7./16**2) * 2.0**10
即 3740.0
:
>>> float.fromhex('0x3.a7p10')
3740.0
对 3740.0
应用反向转换会得到另一个代表相同数值的十六进制数字符串:
>>> float.hex(3740.0)
'0x1.d380000000000p+11'
数字类型的哈希运算¶
For numbers x
and y
, possibly of different types, it’s a requirement
that hash(x) == hash(y)
whenever x == y
(see the __hash__()
method documentation for more details). For ease of implementation and
efficiency across a variety of numeric types (including int
,
float
, decimal.Decimal
and fractions.Fraction
)
Python’s hash for numeric types is based on a single mathematical function
that’s defined for any rational number, and hence applies to all instances of
int
and fractions.Fraction
, and all finite instances of
float
and decimal.Decimal
. Essentially, this function is
given by reduction modulo P
for a fixed prime P
. The value of P
is
made available to Python as the modulus
attribute of
sys.hash_info
.
CPython implementation detail: 目前所用的质数设定,在 C long 为 32 位的机器上 P = 2**31 - 1
而在 C long 为 64 位的机器上 P = 2**61 - 1
。
详细规则如下所述:
如果
x = m / n
是一个非负的有理数且n
不可被P
整除,则定义hash(x)
为m * invmod(n, P) % P
,其中invmod(n, P)
是对n
模P
取反。如果
x = m / n
是一个非负的有理数且n
可被P
整除(但m
不能)则n
不能对P
降模,以上规则不适用;在此情况下则定义hash(x)
为常数值sys.hash_info.inf
。如果
x = m / n
是一个负的有理数则定义hash(x)
为-hash(-x)
。 如果结果哈希值为-1
则将其替换为-2
。特殊值
sys.hash_info.inf
和-sys.hash_info.inf
分别用于正无穷或负无穷的哈希值。对于一个
complex
值z
,会通过计算hash(z.real) + sys.hash_info.imag * hash(z.imag)
将实部和虚部的哈希值结合起来,并进行降模2**sys.hash_info.width
以使其处于range(-2**(sys.hash_info.width - 1), 2**(sys.hash_info.width - 1))
范围之内。 同样地,如果结果为-1
则将其替换为-2
。
为了阐明上述规则,这里有一些等价于内置哈希算法的 Python 代码示例,可用于计算有理数、float
或 complex
的哈希值:
import sys, math
def hash_fraction(m, n):
"""Compute the hash of a rational number m / n.
Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).
"""
P = sys.hash_info.modulus
# Remove common factors of P. (Unnecessary if m and n already coprime.)
while m % P == n % P == 0:
m, n = m // P, n // P
if n % P == 0:
hash_value = sys.hash_info.inf
else:
# Fermat's Little Theorem: pow(n, P-1, P) is 1, so
# pow(n, P-2, P) gives the inverse of n modulo P.
hash_value = (abs(m) % P) * pow(n, P - 2, P) % P
if m < 0:
hash_value = -hash_value
if hash_value == -1:
hash_value = -2
return hash_value
def hash_float(x):
"""Compute the hash of a float x."""
if math.isnan(x):
return object.__hash__(x)
elif math.isinf(x):
return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:
return hash_fraction(*x.as_integer_ratio())
def hash_complex(z):
"""Compute the hash of a complex number z."""
hash_value = hash_float(z.real) + sys.hash_info.imag * hash_float(z.imag)
# do a signed reduction modulo 2**sys.hash_info.width
M = 2**(sys.hash_info.width - 1)
hash_value = (hash_value & (M - 1)) - (hash_value & M)
if hash_value == -1:
hash_value = -2
return hash_value
迭代器类型¶
Python 支持在容器中进行迭代的概念。 这是通过使用两个单独方法来实现的;它们被用于允许用户自定义类对迭代的支持。 将在下文中详细描述的序列总是支持迭代方法。
One method needs to be defined for container objects to provide iterable support:
- container.__iter__()¶
Return an iterator object. The object is required to support the iterator protocol described below. If a container supports different types of iteration, additional methods can be provided to specifically request iterators for those iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which supports both breadth-first and depth-first traversal.) This method corresponds to the
tp_iter
slot of the type structure for Python objects in the Python/C API.
迭代器对象自身需要支持以下两个方法,它们共同组成了 迭代器协议:
- iterator.__iter__()¶
Return the iterator object itself. This is required to allow both containers and iterators to be used with the
for
andin
statements. This method corresponds to thetp_iter
slot of the type structure for Python objects in the Python/C API.
- iterator.__next__()¶
Return the next item from the iterator. If there are no further items, raise the
StopIteration
exception. This method corresponds to thetp_iternext
slot of the type structure for Python objects in the Python/C API.
Python 定义了几种迭代器对象以支持对一般和特定序列类型、字典和其他更特别的形式进行迭代。 除了迭代器协议的实现,特定类型的其他性质对迭代操作来说都不重要。
一旦迭代器的 __next__()
方法引发了 StopIteration
,它必须一直对后续调用引发同样的异常。 不遵循此行为特性的实现将无法正常使用。
生成器类型¶
Python 的 generator 提供了一种实现迭代器协议的便捷方式。 如果容器对象 __iter__()
方法被实现为一个生成器,它将自动返回一个迭代器对象(从技术上说是一个生成器对象),该对象提供 __iter__()
和 __next__()
方法。 有关生成器的更多信息可以参阅 yield 表达式的文档。
序列类型 — list
, tuple
, range
¶
有三种基本序列类型:list, tuple 和 range 对象。 为处理 二进制数据 和 文本字符串 而特别定制的附加序列类型会在专门的小节中描述。
通用序列操作¶
大多数序列类型,包括可变类型和不可变类型都支持下表中的操作。 collections.abc.Sequence
ABC 被提供用来更容易地在自定义序列类型上正确地实现这些操作。
此表按优先级升序列出了序列操作。 在表格中,s 和 t 是具有相同类型的序列,n, i, j 和 k 是整数而 x 是任何满足 s 所规定的类型和值限制的任意对象。
in
和 not in
操作具有与比较操作相同的优先级。 +
(拼接) 和 *
(重复) 操作具有与对应数值运算相同的优先级。 3
运算 |
结果: |
备注 |
---|---|---|
|
如果 s 中的某项等于 x 则结果为 |
(1) |
|
如果 s 中的某项等于 x 则结果为 |
(1) |
|
s 与 t 相拼接 |
(6)(7) |
|
相当于 s 与自身进行 n 次拼接 |
(2)(7) |
|
s 的第 i 项,起始为 0 |
(3) |
|
s 从 i 到 j 的切片 |
(3)(4) |
|
s 从 i 到 j 步长为 k 的切片 |
(3)(5) |
|
s 的长度 |
|
|
s 的最小项 |
|
|
s 的最大项 |
|
|
x 在 s 中首次出现项的索引号(索引号在 i 或其后且在 j 之前) |
(8) |
|
x 在 s 中出现的总次数 |
相同类型的序列也支持比较。 特别地,tuple 和 list 的比较是通过比较对应元素的字典顺序。 这意味着想要比较结果相等,则每个元素比较结果都必须相等,并且两个序列长度必须相同。 (完整细节请参阅语言参考的 比较运算 部分。)
Forward and reversed iterators over mutable sequences access values using an
index. That index will continue to march forward (or backward) even if the
underlying sequence is mutated. The iterator terminates only when an
IndexError
or a StopIteration
is encountered (or when the index
drops below zero).
注释:
虽然
in
和not in
操作在通常情况下仅被用于简单的成员检测,某些专门化序列 (例如str
,bytes
和bytearray
) 也使用它们进行子序列检测:>>> "gg" in "eggs" True
小于
0
的 n 值会被当作0
来处理 (生成一个与 s 同类型的空序列)。 请注意序列 s 中的项并不会被拷贝;它们会被多次引用。 这一点经常会令 Python 编程新手感到困扰;例如:>>> lists = [[]] * 3 >>> lists [[], [], []] >>> lists[0].append(3) >>> lists [[3], [3], [3]]
具体的原因在于
[[]]
是一个包含了一个空列表的单元素列表,所以[[]] * 3
结果中的三个元素都是对这一个空列表的引用。 修改lists
中的任何一个元素实际上都是对这一个空列表的修改。 你可以用以下方式创建以不同列表为元素的列表:>>> lists = [[] for i in range(3)] >>> lists[0].append(3) >>> lists[1].append(5) >>> lists[2].append(7) >>> lists [[3], [5], [7]]
进一步的解释可以在 FAQ 条目 如何创建多维列表? 中查看。
如果 i 或 j 为负值,则索引顺序是相对于序列 s 的末尾: 索引号会被替换为
len(s) + i
或len(s) + j
。 但要注意-0
仍然为0
。s 从 i 到 j 的切片被定义为所有满足
i <= k < j
的索引号 k 的项组成的序列。 如果 i 或 j 大于len(s)
,则使用len(s)
。 如果 i 被省略或为None
,则使用0
。 如果 j 被省略或为None
,则使用len(s)
。 如果 i 大于等于 j,则切片为空。s 从 i 到 j 步长为 k 的切片被定义为所有满足
0 <= n < (j-i)/k
的索引号x = i + n*k
的项组成的序列。 换句话说,索引号为i
,i+k
,i+2*k
,i+3*k
,以此类推,当达到 j 时停止 (但一定不包括 j)。 当 k 为正值时,i 和 j 会被减至不大于len(s)
。 当 k 为负值时,i 和 j 会被减至不大于len(s) - 1
。 如果 i 或 j 被省略或为None
,它们会成为“终止”值 (是哪一端的终止值则取决于 k 的符号)。 请注意,k 不可为零。 如果 k 为None
,则当作1
处理。拼接不可变序列总是会生成新的对象。 这意味着通过重复拼接来构建序列的运行时开销将会基于序列总长度的乘方。 想要获得线性的运行时开销,你必须改用下列替代方案之一:
如果拼接
str
对象,你可以构建一个列表并在最后使用str.join()
或是写入一个io.StringIO
实例并在结束时获取它的值如果拼接
bytes
对象,你可以类似地使用bytes.join()
或io.BytesIO
,或者你也可以使用bytearray
对象进行原地拼接。bytearray
对象是可变的,并且具有高效的重分配机制对于其它类型,请查看相应的文档
某些序列类型 (例如
range
) 仅支持遵循特定模式的项序列,因此并不支持序列拼接或重复。当 x 在 s 中找不到时
index
会引发ValueError
。 不是所有实现都支持传入额外参数 i 和 j。 这两个参数允许高效地搜索序列的子序列。 传入这两个额外参数大致相当于使用s[i:j].index(x)
,但是不会复制任何数据,并且返回的索引是相对于序列的开头而非切片的开头。
不可变序列类型¶
不可变序列类型普遍实现而可变序列类型未实现的唯一操作就是对 hash()
内置函数的支持。
这种支持允许不可变类型,例如 tuple
实例被用作 dict
键,以及存储在 set
和 frozenset
实例中。
尝试对包含有不可哈希值的不可变序列进行哈希运算将会导致 TypeError
。
可变序列类型¶
以下表格中的操作是在可变序列类型上定义的。 collections.abc.MutableSequence
ABC 被提供用来更容易地在自定义序列类型上正确实现这些操作。
表格中的 s 是可变序列类型的实例,t 是任意可迭代对象,而 x 是符合对 s 所规定类型与值限制的任何对象 (例如,bytearray
仅接受满足 0 <= x <= 255
值限制的整数)。
运算 |
结果: |
备注 |
---|---|---|
|
将 s 的第 i 项替换为 x |
|
|
将 s 从 i 到 j 的切片替换为可迭代对象 t 的内容 |
|
|
等同于 |
|
|
将 |
(1) |
|
从列表中移除 |
|
|
将 x 添加到序列的末尾 (等同于 |
|
|
从 s 中移除所有项 (等同于 |
(5) |
|
创建 s 的浅拷贝 (等同于 |
(5) |
|
用 t 的内容扩展 s (基本上等同于 |
|
|
使用 s 的内容重复 n 次来对其进行更新 |
(6) |
|
在由 i 给出的索引位置将 x 插入 s (等同于 |
|
|
提取在 i 位置上的项,并将其从 s 中移除 |
(2) |
|
删除 s 中第一个 |
(3) |
|
就地将列表中的元素逆序。 |
(4) |
注释:
t 必须与它所替换的切片具有相同的长度。
可选参数 i 默认为
-1
,因此在默认情况下会移除并返回最后一项。当在 s 中找不到 x 时
remove()
操作会引发ValueError
。当反转大尺寸序列时
reverse()
方法会原地修改该序列以保证空间经济性。 为提醒用户此操作是通过间接影响进行的,它并不会返回反转后的序列。包括
clear()
和copy()
是为了与不支持切片操作的可变容器 (例如dict
和set
) 的接口保持一致。copy()
不是collections.abc.MutableSequence
ABC 的一部分,但大多数具体的可变序列类都提供了它。3.3 新版功能:
clear()
和copy()
方法。n 值为一个整数,或是一个实现了
__index__()
的对象。 n 值为零或负数将清空序列。 序列中的项不会被拷贝;它们会被多次引用,正如 通用序列操作 中有关s * n
的说明。
列表¶
列表是可变序列,通常用于存放同类项目的集合(其中精确的相似程度将根据应用而变化)。
- class list([iterable])¶
可以用多种方式构建列表:
使用一对方括号来表示空列表:
[]
使用方括号,其中的项以逗号分隔:
[a]
,[a, b, c]
使用列表推导式:
[x for x in iterable]
使用类型的构造器:
list()
或list(iterable)
构造器将构造一个列表,其中的项与 iterable 中的项具有相同的的值与顺序。 iterable 可以是序列、支持迭代的容器或其它可迭代对象。 如果 iterable 已经是一个列表,将创建并返回其副本,类似于
iterable[:]
。 例如,list('abc')
返回['a', 'b', 'c']
而list( (1, 2, 3) )
返回[1, 2, 3]
。 如果没有给出参数,构造器将创建一个空列表[]
。其它许多操作也会产生列表,包括
sorted()
内置函数。列表实现了所有 一般 和 可变 序列的操作。 列表还额外提供了以下方法:
- sort(*, key=None, reverse=False)¶
此方法会对列表进行原地排序,只使用
<
来进行各项间比较。 异常不会被屏蔽 —— 如果有任何比较操作失败,整个排序操作将失败(而列表可能会处于被部分修改的状态)。sort()
接受两个仅限以关键字形式传入的参数 (仅限关键字参数):key 指定带有一个参数的函数,用于从每个列表元素中提取比较键 (例如
key=str.lower
)。 对应于列表中每一项的键会被计算一次,然后在整个排序过程中使用。 默认值None
表示直接对列表项排序而不计算一个单独的键值。可以使用
functools.cmp_to_key()
将 2.x 风格的 cmp 函数转换为 key 函数。reverse 为一个布尔值。 如果设为
True
,则每个列表元素将按反向顺序比较进行排序。当顺序大尺寸序列时此方法会原地修改该序列以保证空间经济性。 为提醒用户此操作是通过间接影响进行的,它并不会返回排序后的序列(请使用
sorted()
显示地请求一个新的已排序列表实例)。sort()
方法确保是稳定的。 如果一个排序确保不会改变比较结果相等的元素的相对顺序就称其为稳定的 — 这有利于进行多重排序(例如先按部门、再接薪级排序)。有关排序示例和简要排序教程,请参阅 排序指南 。
CPython implementation detail: 在一个列表被排序期间,尝试改变甚至进行检测也会造成未定义的影响。 Python 的 C 实现会在排序期间将列表显示为空,如果发现列表在排序期间被改变将会引发
ValueError
。
元组¶
元组是不可变序列,通常用于储存异构数据的多项集(例如由 enumerate()
内置函数所产生的二元组)。 元组也被用于需要同构数据的不可变序列的情况(例如允许存储到 set
或 dict
的实例)。
- class tuple([iterable])¶
可以用多种方式构建元组:
使用一对圆括号来表示空元组:
()
使用一个后缀的逗号来表示单元组:
a,
或(a,)
使用以逗号分隔的多个项:
a, b, c
or(a, b, c)
使用内置的
tuple()
:tuple()
或tuple(iterable)
构造器将构造一个元组,其中的项与 iterable 中的项具有相同的值与顺序。 iterable 可以是序列、支持迭代的容器或其他可迭代对象。 如果 iterable 已经是一个元组,会不加改变地将其返回。 例如,
tuple('abc')
返回('a', 'b', 'c')
而tuple( [1, 2, 3] )
返回(1, 2, 3)
。 如果没有给出参数,构造器将创建一个空元组()
。请注意决定生成元组的其实是逗号而不是圆括号。 圆括号只是可选的,生成空元组或需要避免语法歧义的情况除外。 例如,
f(a, b, c)
是在调用函数时附带三个参数,而f((a, b, c))
则是在调用函数时附带一个三元组。元组实现了所有 一般 序列的操作。
对于通过名称访问相比通过索引访问更清晰的异构数据多项集,collections.namedtuple()
可能是比简单元组对象更为合适的选择。
range 对象¶
range
类型表示不可变的数字序列,通常用于在 for
循环中循环指定的次数。
- class range(stop)¶
- class range(start, stop[, step])
The arguments to the range constructor must be integers (either built-in
int
or any object that implements the__index__()
special method). If the step argument is omitted, it defaults to1
. If the start argument is omitted, it defaults to0
. If step is zero,ValueError
is raised.如果 step 为正值,确定 range
r
内容的公式为r[i] = start + step*i
其中i >= 0
且r[i] < stop
。如果 step 为负值,确定 range 内容的公式仍然为
r[i] = start + step*i
,但限制条件改为i >= 0
且r[i] > stop
.如果
r[0]
不符合值的限制条件,则该 range 对象为空。 range 对象确实支持负索引,但是会将其解读为从正索引所确定的序列的末尾开始索引。元素绝对值大于
sys.maxsize
的 range 对象是被允许的,但某些特性 (例如len()
) 可能引发OverflowError
。一些 range 对象的例子:
>>> list(range(10)) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> list(range(1, 11)) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>> list(range(0, 30, 5)) [0, 5, 10, 15, 20, 25] >>> list(range(0, 10, 3)) [0, 3, 6, 9] >>> list(range(0, -10, -1)) [0, -1, -2, -3, -4, -5, -6, -7, -8, -9] >>> list(range(0)) [] >>> list(range(1, 0)) []
range 对象实现了 一般 序列的所有操作,但拼接和重复除外(这是由于 range 对象只能表示符合严格模式的序列,而重复和拼接通常都会违反这样的模式)。
- start¶
start 形参的值 (如果该形参未提供则为
0
)
- stop¶
stop 形参的值
- step¶
step 形参的值 (如果该形参未提供则为
1
)
range
类型相比常规 list
或 tuple
的优势在于一个 range
对象总是占用固定数量的(较小)内存,不论其所表示的范围有多大(因为它只保存了 start
, stop
和 step
值,并会根据需要计算具体单项或子范围的值)。
range 对象实现了 collections.abc.Sequence
ABC,提供如包含检测、元素索引查找、切片等特性,并支持负索引 (参见 序列类型 — list, tuple, range):
>>> r = range(0, 20, 2)
>>> r
range(0, 20, 2)
>>> 11 in r
False
>>> 10 in r
True
>>> r.index(10)
5
>>> r[5]
10
>>> r[:5]
range(0, 10, 2)
>>> r[-1]
18
使用 ==
和 !=
检测 range 对象是否相等是将其作为序列来比较。 也就是说,如果两个 range 对象表示相同的值序列就认为它们是相等的。 (请注意比较结果相等的两个 range 对象可能会具有不同的 start
, stop
和 step
属性,例如 range(0) == range(2, 1, 3)
而 range(0, 3, 2) == range(0, 4, 2)
。)
在 3.2 版更改: 实现 Sequence ABC。 支持切片和负数索引。 使用 int
对象在固定时间内进行成员检测,而不是逐一迭代所有项。
在 3.3 版更改: 定义 ‘==’ 和 ‘!=’ 以根据 range 对象所定义的值序列来进行比较(而不是根据对象的标识)。
参见
The linspace recipe shows how to implement a lazy version of range suitable for floating point applications.
文本序列类型 — str
¶
在 Python 中处理文本数据是使用 str
对象,也称为 字符串。 字符串是由 Unicode 码位构成的不可变 序列。 字符串字面值有多种不同的写法:
单引号:
'允许包含有 "双" 引号'
Double quotes:
"allows embedded 'single' quotes"
三重引号:
'''三重单引号'''
,"""三重双引号"""
使用三重引号的字符串可以跨越多行 —— 其中所有的空白字符都将包含在该字符串字面值中。
作为单一表达式组成部分,之间只由空格分隔的多个字符串字面值会被隐式地转换为单个字符串字面值。 也就是说,("spam " "eggs") == "spam eggs"
。
请参阅 字符串与字节串字面值 有解有关不同字符串字面值的更多信息,包括所支持的转义序列,以及使用 r
(“raw”) 前缀来禁用大多数转义序列的处理。
字符串也可以通过使用 str
构造器从其他对象创建。
由于不存在单独的“字符”类型,对字符串做索引操作将产生一个长度为 1 的字符串。 也就是说,对于一个非空字符串 s, s[0] == s[0:1]
。
不存在可变的字符串类型,但是 str.join()
或 io.StringIO
可以被被用来根据多个片段高效率地构建字符串。
在 3.3 版更改: 为了与 Python 2 系列的向下兼容,再次允许字符串字面值使用 u
前缀。 它对字符串字面值的含义没有影响,并且不能与 r
前缀同时出现。
- class str(object='')¶
- class str(object=b'', encoding='utf-8', errors='strict')
返回 object 的 字符串 版本。 如果未提供 object 则返回空字符串。 在其他情况下
str()
的行为取决于 encoding 或 errors 是否有给出,具体见下。If neither encoding nor errors is given,
str(object)
returnstype(object).__str__(object)
, which is the “informal” or nicely printable string representation of object. For string objects, this is the string itself. If object does not have a__str__()
method, thenstr()
falls back to returningrepr(object)
.如果 encoding 或 errors 至少给出其中之一,则 object 应该是一个 bytes-like object (例如
bytes
或bytearray
)。 在此情况下,如果 object 是一个bytes
(或bytearray
) 对象,则str(bytes, encoding, errors)
等价于bytes.decode(encoding, errors)
。 否则的话,会在调用bytes.decode()
之前获取缓冲区对象下层的 bytes 对象。 请参阅 二进制序列类型 — bytes, bytearray, memoryview 与 缓冲协议 了解有关缓冲区对象的信息。将一个
bytes
对象传入str()
而不给出 encoding 或 errors 参数的操作属于第一种情况, 将返回非正式的字符串表示(另请参阅 Python 的-b
命令行选项)。 例如:>>> str(b'Zoot!') "b'Zoot!'"
有关
str
类及其方法的更多信息,请参阅下面的 文本序列类型 — str 和 字符串的方法 小节。 要输出格式化字符串,请参阅 格式字符串字面值 和 格式字符串语法 小节。 此外还可以参阅 文本处理服务 小节。
字符串的方法¶
字符串实现了所有 一般 序列的操作,还额外提供了以下列出的一些附加方法。
字符串还支持两种字符串格式化样式,一种提供了很大程度的灵活性和可定制性 (参阅 str.format()
, 格式字符串语法 和 自定义字符串格式化) 而另一种是基于 C printf
样式的格式化,它可处理的类型范围较窄,并且更难以正确使用,但对于它可处理的情况往往会更为快速 (printf 风格的字符串格式化)。
标准库的 文本处理服务 部分涵盖了许多其他模块,提供各种文本相关工具(例如包含于 re
模块中的正则表达式支持)。
- str.capitalize()¶
返回原字符串的副本,其首个字符大写,其余为小写。
在 3.8 版更改: 第一个字符现在被放入了 titlecase 而不是 uppercase。 这意味着复合字母类字符将只有首个字母改为大写,而再不是全部字符大写。
- str.casefold()¶
返回原字符串消除大小写的副本。 消除大小写的字符串可用于忽略大小写的匹配。
消除大小写类似于转为小写,但是更加彻底一些,因为它会移除字符串中的所有大小写变化形式。 例如,德语小写字母
'ß'
相当于"ss"
。 由于它已经是小写了,lower()
不会对'ß'
做任何改变;而casefold()
则会将其转换为"ss"
。消除大小写算法的描述请参见 Unicode 标准的 3.13 节。
3.3 新版功能.
- str.center(width[, fillchar])¶
返回长度为 width 的字符串,原字符串在其正中。 使用指定的 fillchar 填充两边的空位(默认使用 ASCII 空格符)。 如果 width 小于等于
len(s)
则返回原字符串的副本。
- str.count(sub[, start[, end]])¶
返回子字符串 sub 在 [start, end] 范围内非重叠出现的次数。 可选参数 start 与 end 会被解读为切片表示法。
- str.encode(encoding='utf-8', errors='strict')¶
返回原字符串编码为字节串对象的版本。 默认编码为
'utf-8'
。 可以给出 errors 来设置不同的错误处理方案。 errors 的默认值为'strict'
,表示编码错误会引发UnicodeError
。 其他可用的值为'ignore'
,'replace'
,'xmlcharrefreplace'
,'backslashreplace'
以及任何其他通过codecs.register_error()
注册的值,请参阅 错误处理方案 小节。 要查看可用的编码列表,请参阅 标准编码 小节。默认情况下,为了获得最佳性能,不会检测 errors 参数,而只在首次编码错误时用到它。若要检测 errors ,请启用 Python开发模式 或用 调试版本 。
在 3.1 版更改: 加入了对关键字参数的支持。
在 3.9 版更改: 现在,仅在开发模式和 调试模式 下才会检测 errors。
- str.endswith(suffix[, start[, end]])¶
如果字符串以指定的 suffix 结束返回
True
,否则返回False
。 suffix 也可以为由多个供查找的后缀构成的元组。 如果有可选项 start,将从所指定位置开始检查。 如果有可选项 end,将在所指定位置停止比较。
- str.expandtabs(tabsize=8)¶
返回字符串的副本,其中所有的制表符会由一个或多个空格替换,具体取决于当前列位置和给定的制表符宽度。 每 tabsize 个字符设为一个制表位(默认值 8 时设定的制表位在列 0, 8, 16 依次类推)。 要展开字符串,当前列将被设为零并逐一检查字符串中的每个字符。 如果字符为制表符 (
\t
),则会在结果中插入一个或多个空格符,直到当前列等于下一个制表位。 (制表符本身不会被复制。) 如果字符为换行符 (\n
) 或回车符 (\r
),它会被复制并将当前列重设为零。 任何其他字符会被不加修改地复制并将当前列加一,不论该字符在被打印时会如何显示。>>> '01\t012\t0123\t01234'.expandtabs() '01 012 0123 01234' >>> '01\t012\t0123\t01234'.expandtabs(4) '01 012 0123 01234'
- str.find(sub[, start[, end]])¶
返回子字符串 sub 在
s[start:end]
切片内被找到的最小索引。 可选参数 start 与 end 会被解读为切片表示法。 如果 sub 未被找到则返回-1
。
- str.format(*args, **kwargs)¶
执行字符串格式化操作。 调用此方法的字符串可以包含字符串字面值或者以花括号
{}
括起来的替换域。 每个替换域可以包含一个位置参数的数字索引,或者一个关键字参数的名称。 返回的字符串副本中每个替换域都会被替换为对应参数的字符串值。>>> "The sum of 1 + 2 is {0}".format(1+2) 'The sum of 1 + 2 is 3'
请参阅 格式字符串语法 了解有关可以在格式字符串中指定的各种格式选项的说明。
备注
当使用
n
类型 (例如:'{:n}'.format(1234)
) 来格式化数字 (int
,float
,complex
,decimal.Decimal
及其子类) 的时候,该函数会临时性地将LC_CTYPE
区域设置为LC_NUMERIC
区域以解码localeconv()
的decimal_point
和thousands_sep
字段,如果它们是非 ASCII 字符或长度超过 1 字节的话,并且LC_NUMERIC
区域会与LC_CTYPE
区域不一致。 这个临时更改会影响其他线程。在 3.7 版更改: 当使用
n
类型格式化数字时,该函数在某些情况下会临时性地将LC_CTYPE
区域设置为LC_NUMERIC
区域。
- str.format_map(mapping)¶
类似于
str.format(**mapping)
,不同之处在于mapping
会被直接使用而不是复制到一个dict
。 适宜使用此方法的一个例子是当mapping
为 dict 的子类的情况:>>> class Default(dict): ... def __missing__(self, key): ... return key ... >>> '{name} was born in {country}'.format_map(Default(name='Guido')) 'Guido was born in country'
3.2 新版功能.
- str.index(sub[, start[, end]])¶
类似于
find()
,但在找不到子字符串时会引发ValueError
。
- str.isalnum()¶
如果字符串中的所有字符都是字母或数字且至少有一个字符,则返回
True
, 否则返回False
。 如果c.isalpha()
,c.isdecimal()
,c.isdigit()
,或c.isnumeric()
之中有一个返回True
,则字符``c``是字母或数字。
- str.isalpha()¶
如果字符串中的所有字符都是字母,并且至少有一个字符,返回
True
,否则返回False
。字母字符是指那些在 Unicode 字符数据库中定义为 “Letter” 的字符,即那些具有 “Lm”、”Lt”、”Lu”、”Ll” 或 “Lo” 之一的通用类别属性的字符。 注意,这与 Unicode 标准中定义的”字母”属性不同。
- str.isascii()¶
如果字符串为空或字符串中的所有字符都是 ASCII ,返回
True
,否则返回False
。ASCII 字符的码点范围是 U+0000-U+007F 。3.7 新版功能.
- str.isdecimal()¶
如果字符串中的所有字符都是十进制字符且该字符串至少有一个字符,则返回
True
, 否则返回False
。十进制字符指那些可以用来组成10进制数字的字符,例如 U+0660 ,即阿拉伯字母数字0 。 严格地讲,十进制字符是 Unicode 通用类别 “Nd” 中的一个字符。
- str.isdigit()¶
如果字符串中的所有字符都是数字,并且至少有一个字符,返回
True
,否则返回False
。 数字包括十进制字符和需要特殊处理的数字,如兼容性上标数字。这包括了不能用来组成 10 进制数的数字,如 Kharosthi 数。 严格地讲,数字是指属性值为 Numeric_Type=Digit 或 Numeric_Type=Decimal 的字符。
- str.isidentifier()¶
如果字符串是有效的标识符,返回
True
,依据语言定义, 标识符和关键字 节。调用
keyword.iskeyword()
来检测字符串s
是否为保留标识符,例如def
和class
。示例:
>>> from keyword import iskeyword >>> 'hello'.isidentifier(), iskeyword('hello') (True, False) >>> 'def'.isidentifier(), iskeyword('def') (True, True)
- str.isnumeric()¶
如果字符串中至少有一个字符且所有字符均为数值字符则返回
True
,否则返回False
。 数值字符包括数字字符,以及所有在 Unicode 中设置了数值特性属性的字符,例如 U+2155, VULGAR FRACTION ONE FIFTH。 正式的定义为:数值字符就是具有特征属性值 Numeric_Type=Digit, Numeric_Type=Decimal 或 Numeric_Type=Numeric 的字符。
- str.isprintable()¶
如果字符串中所有字符均为可打印字符或字符串为空则返回
True
,否则返回False
。 不可打印字符是在 Unicode 字符数据库中被定义为 “Other” 或 “Separator” 的字符,例外情况是 ASCII 空格字符 (0x20) 被视作可打印字符。 (请注意在此语境下可打印字符是指当对一个字符串发起调用repr()
时不必被转义的字符。 它们与字符串写入sys.stdout
或sys.stderr
时所需的处理无关。)
- str.isspace()¶
如果字符串中只有空白字符且至少有一个字符则返回
True
,否则返回False
。空白 字符是指在 Unicode 字符数据库 (参见
unicodedata
) 中主要类别为Zs
(“Separator, space”) 或所属双向类为WS
,B
或S
的字符。
- str.istitle()¶
如果字符串中至少有一个字符且为标题字符串则返回
True
,例如大写字符之后只能带非大写字符而小写字符必须有大写字符打头。 否则返回False
。
- str.isupper()¶
如果字符串中至少有一个区分大小写的字符 4 且此类字符均为大写则返回
True
,否则返回False
。>>> 'BANANA'.isupper() True >>> 'banana'.isupper() False >>> 'baNana'.isupper() False >>> ' '.isupper() False
- str.join(iterable)¶
返回一个由 iterable 中的字符串拼接而成的字符串。 如果 iterable 中存在任何非字符串值包括
bytes
对象则会引发TypeError
。 调用该方法的字符串将作为元素之间的分隔。
- str.ljust(width[, fillchar])¶
返回长度为 width 的字符串,原字符串在其中靠左对齐。 使用指定的 fillchar 填充空位 (默认使用 ASCII 空格符)。 如果 width 小于等于
len(s)
则返回原字符串的副本。
- str.lstrip([chars])¶
返回原字符串的副本,移除其中的前导字符。 chars 参数为指定要移除字符的字符串。 如果省略或为
None
,则 chars 参数默认移除空白符。 实际上 chars 参数并非指定单个前缀;而是会移除参数值的所有组合:>>> ' spacious '.lstrip() 'spacious ' >>> 'www.example.com'.lstrip('cmowz.') 'example.com'
参见
str.removeprefix()
,该方法将删除单个前缀字符串,而不是全部给定集合中的字符。 例如:>>> 'Arthur: three!'.lstrip('Arthur: ') 'ee!' >>> 'Arthur: three!'.removeprefix('Arthur: ') 'three!'
- static str.maketrans(x[, y[, z]])¶
此静态方法返回一个可供
str.translate()
使用的转换对照表。如果只有一个参数,则它必须是一个将 Unicode 码位序号(整数)或字符(长度为 1 的字符串)映射到 Unicode 码位序号、(任意长度的)字符串或
None
的字典。 字符键将会被转换为码位序号。如果有两个参数,则它们必须是两个长度相等的字符串,并且在结果字典中,x 中每个字符将被映射到 y 中相同位置的字符。 如果有第三个参数,它必须是一个字符串,其中的字符将在结果中被映射到
None
。
- str.partition(sep)¶
在 sep 首次出现的位置拆分字符串,返回一个 3 元组,其中包含分隔符之前的部分、分隔符本身,以及分隔符之后的部分。 如果分隔符未找到,则返回的 3 元组中包含字符本身以及两个空字符串。
- str.removeprefix(prefix, /)¶
如果字符串以 前缀 字符串开头,返回
string[len(prefix):]
。否则,返回原始字符串的副本:>>> 'TestHook'.removeprefix('Test') 'Hook' >>> 'BaseTestCase'.removeprefix('Test') 'BaseTestCase'
3.9 新版功能.
- str.removesuffix(suffix, /)¶
如果字符串以 后缀 字符串结尾,并且 后缀 非空,返回
string[:-len(suffix)]
。否则,返回原始字符串的副本:>>> 'MiscTests'.removesuffix('Tests') 'Misc' >>> 'TmpDirMixin'.removesuffix('Tests') 'TmpDirMixin'
3.9 新版功能.
- str.replace(old, new[, count])¶
返回字符串的副本,其中出现的所有子字符串 old 都将被替换为 new。 如果给出了可选参数 count,则只替换前 count 次出现。
- str.rfind(sub[, start[, end]])¶
返回子字符串 sub 在字符串内被找到的最大(最右)索引,这样 sub 将包含在
s[start:end]
当中。 可选参数 start 与 end 会被解读为切片表示法。 如果未找到则返回-1
。
- str.rindex(sub[, start[, end]])¶
类似于
rfind()
,但在子字符串 sub 未找到时会引发ValueError
。
- str.rjust(width[, fillchar])¶
返回长度为 width 的字符串,原字符串在其中靠右对齐。 使用指定的 fillchar 填充空位 (默认使用 ASCII 空格符)。 如果 width 小于等于
len(s)
则返回原字符串的副本。
- str.rpartition(sep)¶
在 sep 最后一次出现的位置拆分字符串,返回一个 3 元组,其中包含分隔符之前的部分、分隔符本身,以及分隔符之后的部分。 如果分隔符未找到,则返回的 3 元组中包含两个空字符串以及字符串本身。
- str.rsplit(sep=None, maxsplit=- 1)¶
返回一个由字符串内单词组成的列表,使用 sep 作为分隔字符串。 如果给出了 maxsplit,则最多进行 maxsplit 次拆分,从 最右边 开始。 如果 sep 未指定或为
None
,任何空白字符串都会被作为分隔符。 除了从右边开始拆分,rsplit()
的其他行为都类似于下文所述的split()
。
- str.rstrip([chars])¶
返回原字符串的副本,移除其中的末尾字符。 chars 参数为指定要移除字符的字符串。 如果省略或为
None
,则 chars 参数默认移除空白符。 实际上 chars 参数并非指定单个后缀;而是会移除参数值的所有组合:>>> ' spacious '.rstrip() ' spacious' >>> 'mississippi'.rstrip('ipz') 'mississ'
要删除单个后缀字符串,而不是全部给定集合中的字符,请参见
str.removesuffix()
方法。 例如:>>> 'Monty Python'.rstrip(' Python') 'M' >>> 'Monty Python'.removesuffix(' Python') 'Monty'
- str.split(sep=None, maxsplit=- 1)¶
返回一个由字符串内单词组成的列表,使用 sep 作为分隔字符串。 如果给出了 maxsplit,则最多进行 maxsplit 次拆分(因此,列表最多会有
maxsplit+1
个元素)。 如果 maxsplit 未指定或为-1
,则不限制拆分次数(进行所有可能的拆分)。如果给出了 sep,则连续的分隔符不会被组合在一起而是被视为分隔空字符串 (例如
'1,,2'.split(',')
将返回['1', '', '2']
)。 sep 参数可能由多个字符组成 (例如'1<>2<>3'.split('<>')
将返回['1', '2', '3']
)。 使用指定的分隔符拆分空字符串将返回['']
。例如:
>>> '1,2,3'.split(',') ['1', '2', '3'] >>> '1,2,3'.split(',', maxsplit=1) ['1', '2,3'] >>> '1,2,,3,'.split(',') ['1', '2', '', '3', '']
如果 sep 未指定或为
None
,则会应用另一种拆分算法:连续的空格会被视为单个分隔符,其结果将不包含开头或末尾的空字符串,如果字符串包含前缀或后缀空格的话。 因此,使用None
拆分空字符串或仅包含空格的字符串将返回[]
。例如:
>>> '1 2 3'.split() ['1', '2', '3'] >>> '1 2 3'.split(maxsplit=1) ['1', '2 3'] >>> ' 1 2 3 '.split() ['1', '2', '3']
- str.splitlines(keepends=False)¶
返回由原字符串中各行组成的列表,在行边界的位置拆分。 结果列表中不包含行边界,除非给出了 keepends 且为真值。
此方法会以下列行边界进行拆分。 特别地,行边界是 universal newlines 的一个超集。
表示符
描述
\n
换行
\r
回车
\r\n
回车 + 换行
\v
或\x0b
行制表符
\f
或\x0c
换表单
\x1c
文件分隔符
\x1d
组分隔符
\x1e
记录分隔符
\x85
下一行 (C1 控制码)
\u2028
行分隔符
\u2029
段分隔符
在 3.2 版更改:
\v
和\f
被添加到行边界列表例如:
>>> 'ab c\n\nde fg\rkl\r\n'.splitlines() ['ab c', '', 'de fg', 'kl'] >>> 'ab c\n\nde fg\rkl\r\n'.splitlines(keepends=True) ['ab c\n', '\n', 'de fg\r', 'kl\r\n']
不同于
split()
,当给出了分隔字符串 sep 时,对于空字符串此方法将返回一个空列表,而末尾的换行不会令结果中增加额外的行:>>> "".splitlines() [] >>> "One line\n".splitlines() ['One line']
作为比较,
split('\n')
的结果为:>>> ''.split('\n') [''] >>> 'Two lines\n'.split('\n') ['Two lines', '']
- str.startswith(prefix[, start[, end]])¶
如果字符串以指定的 prefix 开始则返回
True
,否则返回False
。 prefix 也可以为由多个供查找的前缀构成的元组。 如果有可选项 start,将从所指定位置开始检查。 如果有可选项 end,将在所指定位置停止比较。
- str.strip([chars])¶
返回原字符串的副本,移除其中的前导和末尾字符。 chars 参数为指定要移除字符的字符串。 如果省略或为
None
,则 chars 参数默认移除空白符。 实际上 chars 参数并非指定单个前缀或后缀;而是会移除参数值的所有组合:>>> ' spacious '.strip() 'spacious' >>> 'www.example.com'.strip('cmowz.') 'example'
最外侧的前导和末尾 chars 参数值将从字符串中移除。 开头端的字符的移除将在遇到一个未包含于 chars 所指定字符集的字符时停止。 类似的操作也将在结尾端发生。 例如:
>>> comment_string = '#....... Section 3.2.1 Issue #32 .......' >>> comment_string.strip('.#! ') 'Section 3.2.1 Issue #32'
- str.swapcase()¶
返回原字符串的副本,其中大写字符转换为小写,反之亦然。 请注意
s.swapcase().swapcase() == s
并不一定为真值。
- str.title()¶
返回原字符串的标题版本,其中每个单词第一个字母为大写,其余字母为小写。
例如:
>>> 'Hello world'.title() 'Hello World'
该算法使用一种简单的与语言无关的定义,将连续的字母组合视为单词。 该定义在多数情况下都很有效,但它也意味着代表缩写形式与所有格的撇号也会成为单词边界,这可能导致不希望的结果:
>>> "they're bill's friends from the UK".title() "They'Re Bill'S Friends From The Uk"
The
string.capwords()
function does not have this problem, as it splits words on spaces only.Alternatively, a workaround for apostrophes can be constructed using regular expressions:
>>> import re >>> def titlecase(s): ... return re.sub(r"[A-Za-z]+('[A-Za-z]+)?", ... lambda mo: mo.group(0).capitalize(), ... s) ... >>> titlecase("they're bill's friends.") "They're Bill's Friends."
- str.translate(table)¶
返回原字符串的副本,其中每个字符按给定的转换表进行映射。 转换表必须是一个使用
__getitem__()
来实现索引操作的对象,通常为 mapping 或 sequence。 当以 Unicode 码位序号(整数)为索引时,转换表对象可以做以下任何一种操作:返回 Unicode 序号或字符串,将字符映射为一个或多个字符;返回None
,将字符从结果字符串中删除;或引发LookupError
异常,将字符映射为其自身。你可以使用
str.maketrans()
基于不同格式的字符到字符映射来创建一个转换映射表。另请参阅
codecs
模块以了解定制字符映射的更灵活方式。
- str.upper()¶
返回原字符串的副本,其中所有区分大小写的字符 4 均转换为大写。 请注意如果
s
包含不区分大小写的字符或者如果结果字符的 Unicode 类别不是 “Lu” (Letter, uppercase) 而是 “Lt” (Letter, titlecase) 则s.upper().isupper()
有可能为False
。所用转换大写算法的描述请参见 Unicode 标准的 3.13 节。
- str.zfill(width)¶
返回原字符串的副本,在左边填充 ASCII
'0'
数码使其长度变为 width。 正负值前缀 ('+'
/'-'
) 的处理方式是在正负符号 之后 填充而非在之前。 如果 width 小于等于len(s)
则返回原字符串的副本。例如:
>>> "42".zfill(5) '00042' >>> "-42".zfill(5) '-0042'
printf
风格的字符串格式化¶
备注
此处介绍的格式化操作具有多种怪异特性,可能导致许多常见错误(例如无法正确显示元组和字典)。 使用较新的 格式化字符串字面值,str.format()
接口或 模板字符串 有助于避免这样的错误。 这些替代方案中的每一种都更好地权衡并提供了简单、灵活以及可扩展性优势。
字符串具有一种特殊的内置操作:使用 %
(取模) 运算符。 这也被称为字符串的 格式化 或 插值 运算符。 对于 format % values
(其中 format 为一个字符串),在 format 中的 %
转换标记符将被替换为零个或多个 values 条目。 其效果类似于在 C 语言中使用 sprintf()
。
如果 format 要求一个单独参数,则 values 可以为一个非元组对象。 5 否则的话,values 必须或者是一个包含项数与格式字符串中指定的转换符项数相同的元组,或者是一个单独映射对象(例如字典)。
转换标记符包含两个或更多字符并具有以下组成,且必须遵循此处规定的顺序:
'%'
字符,用于标记转换符的起始。映射键(可选),由加圆括号的字符序列组成 (例如
(somename)
)。转换旗标(可选),用于影响某些转换类型的结果。
最小字段宽度(可选)。 如果指定为
'*'
(星号),则实际宽度会从 values 元组的下一元素中读取,要转换的对象则为最小字段宽度和可选的精度之后的元素。精度(可选),以在
'.'
(点号) 之后加精度值的形式给出。 如果指定为'*'
(星号),则实际精度会从 values 元组的下一元素中读取,要转换的对象则为精度之后的元素。长度修饰符(可选)。
转换类型。
当右边的参数为一个字典(或其他映射类型)时,字符串中的格式 必须 包含加圆括号的映射键,对应 '%'
字符之后字典中的每一项。 映射键将从映射中选取要格式化的值。 例如:
>>> print('%(language)s has %(number)03d quote types.' %
... {'language': "Python", "number": 2})
Python has 002 quote types.
在此情况下格式中不能出现 *
标记符(因其需要一个序列类的参数列表)。
转换旗标为:
旗标 |
含意 |
---|---|
|
值的转换将使用“替代形式”(具体定义见下文)。 |
|
转换将为数字值填充零字符。 |
|
转换值将靠左对齐(如果同时给出 |
|
(空格) 符号位转换产生的正数(或空字符串)前将留出一个空格。 |
|
符号字符 ( |
可以给出长度修饰符 (h
, l
或 L
),但会被忽略,因为对 Python 来说没有必要 – 所以 %ld
等价于 %d
。
转换类型为:
转换符 |
含意 |
备注 |
---|---|---|
|
有符号十进制整数。 |
|
|
有符号十进制整数。 |
|
|
有符号八进制数。 |
(1) |
|
过时类型 – 等价于 |
(6) |
|
有符号十六进制数(小写)。 |
(2) |
|
有符号十六进制数(大写)。 |
(2) |
|
浮点指数格式(小写)。 |
(3) |
|
浮点指数格式(大写)。 |
(3) |
|
浮点十进制格式。 |
(3) |
|
浮点十进制格式。 |
(3) |
|
浮点格式。 如果指数小于 -4 或不小于精度则使用小写指数格式,否则使用十进制格式。 |
(4) |
|
浮点格式。 如果指数小于 -4 或不小于精度则使用大写指数格式,否则使用十进制格式。 |
(4) |
|
单个字符(接受整数或单个字符的字符串)。 |
|
|
字符串(使用 |
(5) |
|
字符串(使用 |
(5) |
|
字符串(使用 |
(5) |
|
不转换参数,在结果中输出一个 |
注释:
此替代形式会在第一个数码之前插入标示八进制数的前缀 (
'0o'
)。此替代形式会在第一个数码之前插入
'0x'
或'0X'
前缀(取决于是使用'x'
还是'X'
格式)。此替代形式总是会在结果中包含一个小数点,即使其后并没有数码。
小数点后的数码位数由精度决定,默认为 6。
此替代形式总是会在结果中包含一个小数点,末尾各位的零不会如其他情况下那样被移除。
小数点前后的有效数码位数由精度决定,默认为 6。
如果精度为
N
,输出将截短为N
个字符。参见 PEP 237。
由于 Python 字符串显式指明长度,%s
转换不会将 '\0'
视为字符串的结束。
在 3.1 版更改: 绝对值超过 1e50 的 %f
转换不会再被替换为 %g
转换。
二进制序列类型 — bytes
, bytearray
, memoryview
¶
操作二进制数据的核心内置类型是 bytes
和 bytearray
。 它们由 memoryview
提供支持,该对象使用 缓冲区协议 来访问其他二进制对象所在内存,不需要创建对象的副本。
array
模块支持高效地存储基本数据类型,例如 32 位整数和 IEEE754 双精度浮点值。
bytes 对象¶
bytes 对象是由单个字节构成的不可变序列。 由于许多主要二进制协议都基于 ASCII 文本编码,因此 bytes 对象提供了一些仅在处理 ASCII 兼容数据时可用,并且在许多特性上与字符串对象紧密相关的方法。
- class bytes([source[, encoding[, errors]]])¶
首先,表示 bytes 字面值的语法与字符串字面值的大致相同,只是添加了一个
b
前缀:单引号:
b'同样允许嵌入 "双" 引号'
。Double quotes:
b"still allows embedded 'single' quotes"
三重引号:
b'''三重单引号'''
,b"""三重双引号"""
bytes 字面值中只允许 ASCII 字符(无论源代码声明的编码为何)。 任何超出 127 的二进制值必须使用相应的转义序列形式加入 bytes 字面值。
像字符串字面值一样,bytes 字面值也可以使用
r
前缀来禁用转义序列处理。 请参阅 字符串与字节串字面值 了解有关各种 bytes 字面值形式的详情,包括所支持的转义序列。虽然 bytes 字面值和表示法是基于 ASCII 文本的,但 bytes 对象的行为实际上更像是不可变的整数序列,序列中的每个值的大小被限制为
0 <= x < 256
(如果违反此限制将引发ValueError
)。 这种限制是有意设计用以强调以下事实,虽然许多二进制格式都包含基于 ASCII 的元素,可以通过某些面向文本的算法进行有用的操作,但情况对于任意二进制数据来说通常却并非如此(盲目地将文本处理算法应用于不兼容 ASCII 的二进制数据格式往往将导致数据损坏)。除了字面值形式,bytes 对象还可以通过其他几种方式来创建:
指定长度的以零值填充的 bytes 对象:
bytes(10)
通过由整数组成的可迭代对象:
bytes(range(20))
通过缓冲区协议复制现有的二进制数据:
bytes(obj)
另请参阅 bytes 内置类型。
由于两个十六进制数码精确对应一个字节,因此十六进制数是描述二进制数据的常用格式。 相应地,bytes 类型具有从此种格式读取数据的附加类方法:
- classmethod fromhex(string)¶
此
bytes
类方法返回一个解码给定字符串的 bytes 对象。 字符串必须由表示每个字节的两个十六进制数码构成,其中的 ASCII 空白符会被忽略。>>> bytes.fromhex('2Ef0 F1f2 ') b'.\xf0\xf1\xf2'
在 3.7 版更改:
bytes.fromhex()
现在会忽略所有 ASCII 空白符而不只是空格符。
存在一个反向转换函数,可以将 bytes 对象转换为对应的十六进制表示。
- hex([sep[, bytes_per_sep]])¶
返回一个字符串对象,该对象包含实例中每个字节的两个十六进制数字。
>>> b'\xf0\xf1\xf2'.hex() 'f0f1f2'
If you want to make the hex string easier to read, you can specify a single character separator sep parameter to include in the output. By default, this separator will be included between each byte. A second optional bytes_per_sep parameter controls the spacing. Positive values calculate the separator position from the right, negative values from the left.
>>> value = b'\xf0\xf1\xf2' >>> value.hex('-') 'f0-f1-f2' >>> value.hex('_', 2) 'f0_f1f2' >>> b'UUDDLRLRAB'.hex(' ', -4) '55554444 4c524c52 4142'
3.5 新版功能.
在 3.8 版更改:
bytes.hex()
现在支持可选的 sep 和 bytes_per_sep 形参以在十六进制输出的字节之间插入分隔符。
由于 bytes 对象是由整数构成的序列(类似于元组),因此对于一个 bytes 对象 b,b[0]
将为一个整数,而 b[0:1]
将为一个长度为 1 的 bytes 对象。 (这与文本字符串不同,索引和切片所产生的将都是一个长度为 1 的字符串)。
bytes 对象的表示使用字面值格式 (b'...'
),因为它通常都要比像 bytes([46, 46, 46])
这样的格式更好用。 你总是可以使用 list(b)
将 bytes 对象转换为一个由整数构成的列表。
bytearray 对象¶
- class bytearray([source[, encoding[, errors]]])¶
bytearray 对象没有专属的字面值语法,它们总是通过调用构造器来创建:
创建一个空实例:
bytearray()
创建一个指定长度的以零值填充的实例:
bytearray(10)
通过由整数组成的可迭代对象:
bytearray(range(20))
通过缓冲区协议复制现有的二进制数据:
bytearray(b'Hi!')
由于 bytearray 对象是可变的,该对象除了 bytes 和 bytearray 操作 中所描述的 bytes 和 bytearray 共有操作之外,还支持 可变 序列操作。
另请参见 bytearray 内置类型。
由于两个十六进制数码精确对应一个字节,因此十六进制数是描述二进制数据的常用格式。 相应地,bytearray 类型具有从此种格式读取数据的附加类方法:
- classmethod fromhex(string)¶
bytearray
类方法返回一个解码给定字符串的 bytearray 对象。 字符串必须由表示每个字节的两个十六进制数码构成,其中的 ASCII 空白符会被忽略。>>> bytearray.fromhex('2Ef0 F1f2 ') bytearray(b'.\xf0\xf1\xf2')
在 3.7 版更改:
bytearray.fromhex()
现在会忽略所有 ASCII 空白符而不只是空格符。
存在一个反向转换函数,可以将 bytearray 对象转换为对应的十六进制表示。
- hex([sep[, bytes_per_sep]])¶
返回一个字符串对象,该对象包含实例中每个字节的两个十六进制数字。
>>> bytearray(b'\xf0\xf1\xf2').hex() 'f0f1f2'
3.5 新版功能.
在 3.8 版更改: 与
bytes.hex()
相似,bytearray.hex()
现在支持可选的 sep 和 bytes_per_sep 参数以在十六进制输出的字节之间插入分隔符。
由于 bytearray 对象是由整数构成的序列(类似于列表),因此对于一个 bytearray 对象 b,b[0]
将为一个整数,而 b[0:1]
将为一个长度为 1 的 bytearray 对象。 (这与文本字符串不同,索引和切片所产生的将都是一个长度为 1 的字符串)。
bytearray 对象的表示使用 bytes 对象字面值格式 (bytearray(b'...')
),因为它通常都要比 bytearray([46, 46, 46])
这样的格式更好用。 你总是可以使用 list(b)
将 bytearray 对象转换为一个由整数构成的列表。
bytes 和 bytearray 操作¶
bytes 和 bytearray 对象都支持 通用 序列操作。 它们不仅能与相同类型的操作数,也能与任何 bytes-like object 进行互操作。 由于这样的灵活性,它们可以在操作中自由地混合而不会导致错误。 但是,操作结果的返回值类型可能取决于操作数的顺序。
备注
bytes 和 bytearray 对象的方法不接受字符串作为其参数,就像字符串的方法不接受 bytes 对象作为其参数一样。 例如,你必须使用以下写法:
a = "abc"
b = a.replace("a", "f")
和:
a = b"abc"
b = a.replace(b"a", b"f")
某些 bytes 和 bytearray 操作假定使用兼容 ASCII 的二进制格式,因此在处理任意二进数数据时应当避免使用。 这些限制会在下文中说明。
备注
使用这些基于 ASCII 的操作来处理未以基于 ASCII 的格式存储的二进制数据可能会导致数据损坏。
bytes 和 bytearray 对象的下列方法可以用于任意二进制数据。
- bytes.count(sub[, start[, end]])¶
- bytearray.count(sub[, start[, end]])¶
返回子序列 sub 在 [start, end] 范围内非重叠出现的次数。 可选参数 start 与 end 会被解读为切片表示法。
要搜索的子序列可以是任意 bytes-like object 或是 0 至 255 范围内的整数。
在 3.3 版更改: 也接受 0 至 255 范围内的整数作为子序列。
- bytes.removeprefix(prefix, /)¶
- bytearray.removeprefix(prefix, /)¶
如果二进制数据以 前缀 字符串开头,返回
bytes[len(prefix):]
。否则,返回原始二进制数据的副本:>>> b'TestHook'.removeprefix(b'Test') b'Hook' >>> b'BaseTestCase'.removeprefix(b'Test') b'BaseTestCase'
前缀可以是任意 bytes-like object。
备注
此方法的 bytearray 版本 并非 原地操作 —— 它总是产生一个新对象,即便没有做任何改变。
3.9 新版功能.
- bytes.removesuffix(suffix, /)¶
- bytearray.removesuffix(suffix, /)¶
如果二进制数据以 后缀 字符串结尾,并且 后缀 非空,返回
bytes[:-len(suffix)]
。否则,返回原始二进制数据的副本:>>> b'MiscTests'.removesuffix(b'Tests') b'Misc' >>> b'TmpDirMixin'.removesuffix(b'Tests') b'TmpDirMixin'
后缀可以是任意 bytes-like object。
备注
此方法的 bytearray 版本 并非 原地操作 —— 它总是产生一个新对象,即便没有做任何改变。
3.9 新版功能.
- bytes.decode(encoding='utf-8', errors='strict')¶
- bytearray.decode(encoding='utf-8', errors='strict')¶
返回从给定 bytes 解码出来的字符串。 默认编码为
'utf-8'
。 可以给出 errors 来设置不同的错误处理方案。 errors 的默认值为'strict'
,表示编码错误会引发UnicodeError
。 其他可用的值为'ignore'
,'replace'
以及任何其他通过codecs.register_error()
注册的名称,请参阅 错误处理方案 小节。 要查看可用的编码列表,请参阅 标准编码 小节。默认情况下,为了获得最佳性能,不会检测 errors 参数,而只在首次编码错误时用到它。若要检测 errors ,请启用 Python开发模式 或用 调试版本 。
备注
将 encoding 参数传给
str
允许直接解码任何 bytes-like object,无须创建临时的 bytes 或 bytearray 对象。在 3.1 版更改: 加入了对关键字参数的支持。
在 3.9 版更改: 现在,仅在开发模式和 调试模式 下才会检测 errors。
- bytes.endswith(suffix[, start[, end]])¶
- bytearray.endswith(suffix[, start[, end]])¶
如果二进制数据以指定的 suffix 结束则返回
True
,否则返回False
。 suffix 也可以为由多个供查找的后缀构成的元组。 如果有可选项 start,将从所指定位置开始检查。 如果有可选项 end,将在所指定位置停止比较。要搜索的后缀可以是任意 bytes-like object。
- bytes.find(sub[, start[, end]])¶
- bytearray.find(sub[, start[, end]])¶
返回子序列 sub 在数据中被找到的最小索引,sub 包含于切片
s[start:end]
之内。 可选参数 start 与 end 会被解读为切片表示法。 如果 sub 未被找到则返回-1
。要搜索的子序列可以是任意 bytes-like object 或是 0 至 255 范围内的整数。
在 3.3 版更改: 也接受 0 至 255 范围内的整数作为子序列。
- bytes.index(sub[, start[, end]])¶
- bytearray.index(sub[, start[, end]])¶
类似于
find()
,但在找不到子序列时会引发ValueError
。要搜索的子序列可以是任意 bytes-like object 或是 0 至 255 范围内的整数。
在 3.3 版更改: 也接受 0 至 255 范围内的整数作为子序列。
- bytes.join(iterable)¶
- bytearray.join(iterable)¶
返回一个由 iterable 中的二进制数据序列拼接而成的 bytes 或 bytearray 对象。 如果 iterable 中存在任何非 字节类对象 包括存在
str
对象值则会引发TypeError
。 提供该方法的 bytes 或 bytearray 对象的内容将作为元素之间的分隔。
- static bytes.maketrans(from, to)¶
- static bytearray.maketrans(from, to)¶
此静态方法返回一个可用于
bytes.translate()
的转换对照表,它将把 from 中的每个字符映射为 to 中相同位置上的字符;from 与 to 必须都是 字节类对象 并且具有相同的长度。3.1 新版功能.
- bytes.partition(sep)¶
- bytearray.partition(sep)¶
在 sep 首次出现的位置拆分序列,返回一个 3 元组,其中包含分隔符之前的部分、分隔符本身或其 bytearray 副本,以及分隔符之后的部分。 如果分隔符未找到,则返回的 3 元组中包含原序列以及两个空的 bytes 或 bytearray 对象。
要搜索的分隔符可以是任意 bytes-like object。
- bytes.replace(old, new[, count])¶
- bytearray.replace(old, new[, count])¶
返回序列的副本,其中出现的所有子序列 old 都将被替换为 new。 如果给出了可选参数 count,则只替换前 count 次出现。
要搜索的子序列及其替换序列可以是任意 bytes-like object。
备注
此方法的 bytearray 版本 并非 原地操作 —— 它总是产生一个新对象,即便没有做任何改变。
- bytes.rfind(sub[, start[, end]])¶
- bytearray.rfind(sub[, start[, end]])¶
返回子序列 sub 在序列内被找到的最大(最右)索引,这样 sub 将包含在
s[start:end]
当中。 可选参数 start 与 end 会被解读为切片表示法。 如果未找到则返回-1
。要搜索的子序列可以是任意 bytes-like object 或是 0 至 255 范围内的整数。
在 3.3 版更改: 也接受 0 至 255 范围内的整数作为子序列。
- bytes.rindex(sub[, start[, end]])¶
- bytearray.rindex(sub[, start[, end]])¶
类似于
rfind()
,但在子序列 sub 未找到时会引发ValueError
。要搜索的子序列可以是任意 bytes-like object 或是 0 至 255 范围内的整数。
在 3.3 版更改: 也接受 0 至 255 范围内的整数作为子序列。
- bytes.rpartition(sep)¶
- bytearray.rpartition(sep)¶
在 sep 最后一次出现的位置拆分序列,返回一个 3 元组,其中包含分隔符之前的部分,分隔符本身或其 bytearray 副本,以及分隔符之后的部分。 如果分隔符未找到,则返回的 3 元组中包含两个空的 bytes 或 bytearray 对象以及原序列的副本。
要搜索的分隔符可以是任意 bytes-like object。
- bytes.startswith(prefix[, start[, end]])¶
- bytearray.startswith(prefix[, start[, end]])¶
如果二进制数据以指定的 prefix 开头则返回
True
,否则返回False
。 prefix 也可以为由多个供查找的前缀构成的元组。 如果有可选项 start,将从所指定位置开始检查。 如果有可选项 end,将在所指定位置停止比较。要搜索的前缀可以是任意 bytes-like object。
- bytes.translate(table, /, delete=b'')¶
- bytearray.translate(table, /, delete=b'')¶
返回原 bytes 或 bytearray 对象的副本,移除其中所有在可选参数 delete 中出现的 bytes,其余 bytes 将通过给定的转换表进行映射,该转换表必须是长度为 256 的 bytes 对象。
你可以使用
bytes.maketrans()
方法来创建转换表。对于仅需移除字符的转换,请将 table 参数设为
None
:>>> b'read this short text'.translate(None, b'aeiou') b'rd ths shrt txt'
在 3.6 版更改: 现在支持将 delete 作为关键字参数。
以下 bytes 和 bytearray 对象的方法的默认行为会假定使用兼容 ASCII 的二进制格式,但通过传入适当的参数仍然可用于任意二进制数据。 请注意本小节中所有的 bytearray 方法都 不是 原地执行操作,而是会产生新的对象。
- bytes.center(width[, fillbyte])¶
- bytearray.center(width[, fillbyte])¶
返回原对象的副本,在长度为 width 的序列内居中,使用指定的 fillbyte 填充两边的空位(默认使用 ASCII 空格符)。 对于
bytes
对象,如果 width 小于等于len(s)
则返回原序列的副本。备注
此方法的 bytearray 版本 并非 原地操作 —— 它总是产生一个新对象,即便没有做任何改变。
- bytes.ljust(width[, fillbyte])¶
- bytearray.ljust(width[, fillbyte])¶
返回原对象的副本,在长度为 width 的序列中靠左对齐。 使用指定的 fillbyte 填充空位(默认使用 ASCII 空格符)。 对于
bytes
对象,如果 width 小于等于len(s)
则返回原序列的副本。备注
此方法的 bytearray 版本 并非 原地操作 —— 它总是产生一个新对象,即便没有做任何改变。
- bytes.lstrip([chars])¶
- bytearray.lstrip([chars])¶
返回原序列的副本,移除指定的前导字节。 chars 参数为指定要移除字节值集合的二进制序列 —— 这个名称表明此方法通常是用于 ASCII 字符。 如果省略或为
None
,则 chars 参数默认移除 ASCII 空白符。 chars 参数并非指定单个前缀;而是会移除参数值的所有组合:>>> b' spacious '.lstrip() b'spacious ' >>> b'www.example.com'.lstrip(b'cmowz.') b'example.com'
要移除的二进制序列可以是任意 bytes-like object 。 要删除单个前缀字符串,而不是全部给定集合中的字符,请参见
str.removeprefix()
方法。 例如:>>> b'Arthur: three!'.lstrip(b'Arthur: ') b'ee!' >>> b'Arthur: three!'.removeprefix(b'Arthur: ') b'three!'
备注
此方法的 bytearray 版本 并非 原地操作 —— 它总是产生一个新对象,即便没有做任何改变。
- bytes.rjust(width[, fillbyte])¶
- bytearray.rjust(width[, fillbyte])¶
返回原对象的副本,在长度为 width 的序列中靠右对齐。 使用指定的 fillbyte 填充空位(默认使用 ASCII 空格符)。 对于
bytes
对象,如果 width 小于等于len(s)
则返回原序列的副本。备注
此方法的 bytearray 版本 并非 原地操作 —— 它总是产生一个新对象,即便没有做任何改变。
- bytes.rsplit(sep=None, maxsplit=- 1)¶
- bytearray.rsplit(sep=None, maxsplit=- 1)¶
将二进制序列拆分为相同类型的子序列,使用 sep 作为分隔符。 如果给出了 maxsplit,则最多进行 maxsplit 次拆分,从 最右边 开始。 如果 sep 未指定或为
None
,任何只包含 ASCII 空白符的子序列都会被作为分隔符。 除了从右边开始拆分,rsplit()
的其他行为都类似于下文所述的split()
。
- bytes.rstrip([chars])¶
- bytearray.rstrip([chars])¶
返回原序列的副本,移除指定的末尾字节。 chars 参数为指定要移除字节值集合的二进制序列 —— 这个名称表明此方法通常是用于 ASCII 字符。 如果省略或为
None
,则 chars 参数默认移除 ASCII 空白符。 chars 参数并非指定单个后缀;而是会移除参数值的所有组合:>>> b' spacious '.rstrip() b' spacious' >>> b'mississippi'.rstrip(b'ipz') b'mississ'
要移除的二进制序列可以是任意 bytes-like object 。 要删除单个后缀字符串,而不是全部给定集合中的字符,请参见
str.removesuffix()
方法。 例如:>>> b'Monty Python'.rstrip(b' Python') b'M' >>> b'Monty Python'.removesuffix(b' Python') b'Monty'
备注
此方法的 bytearray 版本 并非 原地操作 —— 它总是产生一个新对象,即便没有做任何改变。
- bytes.split(sep=None, maxsplit=- 1)¶
- bytearray.split(sep=None, maxsplit=- 1)¶
将二进制序列拆分为相同类型的子序列,使用 sep 作为分隔符。 如果给出了 maxsplit 且非负值,则最多进行 maxsplit 次拆分(因此,列表最多会有
maxsplit+1
个元素)。 如果 maxsplit 未指定或为-1
,则不限制拆分次数(进行所有可能的拆分)。如果给出了 sep,则连续的分隔符不会被组合在一起而是被视为分隔空子序列 (例如
b'1,,2'.split(b',')
将返回[b'1', b'', b'2']
)。 sep 参数可能为一个多字节序列 (例如b'1<>2<>3'.split(b'<>')
将返回[b'1', b'2', b'3']
)。 使用指定的分隔符拆分空序列将返回[b'']
或[bytearray(b'')]
,具体取决于被拆分对象的类型。 sep 参数可以是任意 bytes-like object。例如:
>>> b'1,2,3'.split(b',') [b'1', b'2', b'3'] >>> b'1,2,3'.split(b',', maxsplit=1) [b'1', b'2,3'] >>> b'1,2,,3,'.split(b',') [b'1', b'2', b'', b'3', b'']
如果 sep 未指定或为
None
,则会应用另一种拆分算法:连续的 ASCII 空白符会被视为单个分隔符,其结果将不包含序列开头或末尾的空白符。 因此,在不指定分隔符的情况下对空序列或仅包含 ASCII 空白符的序列进行拆分将返回[]
。例如:
>>> b'1 2 3'.split() [b'1', b'2', b'3'] >>> b'1 2 3'.split(maxsplit=1) [b'1', b'2 3'] >>> b' 1 2 3 '.split() [b'1', b'2', b'3']
- bytes.strip([chars])¶
- bytearray.strip([chars])¶
返回原序列的副本,移除指定的开头和末尾字节。 chars 参数为指定要移除字节值集合的二进制序列 —— 这个名称表明此方法通常是用于 ASCII 字符。 如果省略或为
None
,则 chars 参数默认移除 ASCII 空白符。 chars 参数并非指定单个前缀或后缀;而是会移除参数值的所有组合:>>> b' spacious '.strip() b'spacious' >>> b'www.example.com'.strip(b'cmowz.') b'example'
要移除的字节值二进制序列可以是任意 bytes-like object。
备注
此方法的 bytearray 版本 并非 原地操作 —— 它总是产生一个新对象,即便没有做任何改变。
以下 bytes 和 bytearray 对象的方法会假定使用兼容 ASCII 的二进制格式,不应当被应用于任意二进制数据。 请注意本小节中所有的 bytearray 方法都 不是 原地执行操作,而是会产生新的对象。
- bytes.capitalize()¶
- bytearray.capitalize()¶
返回原序列的副本,其中每个字节将都将被解读为一个 ASCII 字符,并且第一个字节的字符大写而其余的小写。 非 ASCII 字节值将保持原样不变。
备注
此方法的 bytearray 版本 并非 原地操作 —— 它总是产生一个新对象,即便没有做任何改变。
- bytes.expandtabs(tabsize=8)¶
- bytearray.expandtabs(tabsize=8)¶
返回序列的副本,其中所有的 ASCII 制表符会由一个或多个 ASCII 空格替换,具体取决于当前列位置和给定的制表符宽度。 每 tabsize 个字节设为一个制表位(默认值 8 时设定的制表位在列 0, 8, 16 依次类推)。 要展开序列,当前列位置将被设为零并逐一检查序列中的每个字节。 如果字节为 ASCII 制表符 (
b'\t'
),则并在结果中插入一个或多个空格符,直到当前列等于下一个制表位。 (制表符本身不会被复制。) 如果当前字节为 ASCII 换行符 (b'\n'
) 或回车符 (b'\r'
),它会被复制并将当前列重设为零。 任何其他字节会被不加修改地复制并将当前列加一,不论该字节值在被打印时会如何显示:>>> b'01\t012\t0123\t01234'.expandtabs() b'01 012 0123 01234' >>> b'01\t012\t0123\t01234'.expandtabs(4) b'01 012 0123 01234'
备注
此方法的 bytearray 版本 并非 原地操作 —— 它总是产生一个新对象,即便没有做任何改变。
- bytes.isalnum()¶
- bytearray.isalnum()¶
如果序列中所有字节都是字母类 ASCII 字符或 ASCII 十进制数码并且序列非空则返回
True
,否则返回False
。 字母类 ASCII 字符就是字节值包含在序列b'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
中的字符。 ASCII 十进制数码就是字节值包含在序列b'0123456789'
中的字符。例如:
>>> b'ABCabc1'.isalnum() True >>> b'ABC abc1'.isalnum() False
- bytes.isalpha()¶
- bytearray.isalpha()¶
如果序列中所有字节都是字母类 ASCII 字符并且序列不非空则返回
True
,否则返回False
。 字母类 ASCII 字符就是字节值包含在序列b'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
中的字符。例如:
>>> b'ABCabc'.isalpha() True >>> b'ABCabc1'.isalpha() False
- bytes.isascii()¶
- bytearray.isascii()¶
如果序列为空或序列中所有字节都是 ASCII 字节则返回
True
,否则返回False
。 ASCII 字节的取值范围是 0-0x7F。3.7 新版功能.
- bytes.isdigit()¶
- bytearray.isdigit()¶
如果序列中所有字节都是 ASCII 十进制数码并且序列非空则返回
True
,否则返回False
。 ASCII 十进制数码就是字节值包含在序列b'0123456789'
中的字符。例如:
>>> b'1234'.isdigit() True >>> b'1.23'.isdigit() False
- bytes.islower()¶
- bytearray.islower()¶
如果序列中至少有一个小写的 ASCII 字符并且没有大写的 ASCII 字符则返回
True
,否则返回False
。例如:
>>> b'hello world'.islower() True >>> b'Hello world'.islower() False
小写 ASCII 字符就是字节值包含在序列
b'abcdefghijklmnopqrstuvwxyz'
中的字符。 大写 ASCII 字符就是字节值包含在序列b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
中的字符。
- bytes.isspace()¶
- bytearray.isspace()¶
如果序列中所有字节都是 ASCII 空白符并且序列非空则返回
True
,否则返回False
。 ASCII 空白符就是字节值包含在序列b' \t\n\r\x0b\f'
(空格, 制表, 换行, 回车, 垂直制表, 进纸) 中的字符。
- bytes.istitle()¶
- bytearray.istitle()¶
如果序列为 ASCII 标题大小写形式并且序列非空则返回
True
,否则返回False
。 请参阅bytes.title()
了解有关“标题大小写”的详细定义。例如:
>>> b'Hello World'.istitle() True >>> b'Hello world'.istitle() False
- bytes.isupper()¶
- bytearray.isupper()¶
如果序列中至少有一个大写字母 ASCII 字符并且没有小写 ASCII 字符则返回
True
,否则返回False
。例如:
>>> b'HELLO WORLD'.isupper() True >>> b'Hello world'.isupper() False
小写 ASCII 字符就是字节值包含在序列
b'abcdefghijklmnopqrstuvwxyz'
中的字符。 大写 ASCII 字符就是字节值包含在序列b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
中的字符。
- bytes.lower()¶
- bytearray.lower()¶
返回原序列的副本,其所有大写 ASCII 字符均转换为对应的小写形式。
例如:
>>> b'Hello World'.lower() b'hello world'
小写 ASCII 字符就是字节值包含在序列
b'abcdefghijklmnopqrstuvwxyz'
中的字符。 大写 ASCII 字符就是字节值包含在序列b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
中的字符。备注
此方法的 bytearray 版本 并非 原地操作 —— 它总是产生一个新对象,即便没有做任何改变。
- bytes.splitlines(keepends=False)¶
- bytearray.splitlines(keepends=False)¶
返回由原二进制序列中各行组成的列表,在 ASCII 行边界符的位置拆分。 此方法使用 universal newlines 方式来分行。 结果列表中不包含换行符,除非给出了 keepends 且为真值。
例如:
>>> b'ab c\n\nde fg\rkl\r\n'.splitlines() [b'ab c', b'', b'de fg', b'kl'] >>> b'ab c\n\nde fg\rkl\r\n'.splitlines(keepends=True) [b'ab c\n', b'\n', b'de fg\r', b'kl\r\n']
不同于
split()
,当给出了分隔符 sep 时,对于空字符串此方法将返回一个空列表,而末尾的换行不会令结果中增加额外的行:>>> b"".split(b'\n'), b"Two lines\n".split(b'\n') ([b''], [b'Two lines', b'']) >>> b"".splitlines(), b"One line\n".splitlines() ([], [b'One line'])
- bytes.swapcase()¶
- bytearray.swapcase()¶
返回原序列的副本,其所有小写 ASCII 字符均转换为对应的大写形式,反之亦反。
例如:
>>> b'Hello World'.swapcase() b'hELLO wORLD'
小写 ASCII 字符就是字节值包含在序列
b'abcdefghijklmnopqrstuvwxyz'
中的字符。 大写 ASCII 字符就是字节值包含在序列b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
中的字符。不同于
str.swapcase()
,在些二进制版本下bin.swapcase().swapcase() == bin
总是成立。 大小写转换在 ASCII 中是对称的,即使其对于任意 Unicode 码位来说并不总是成立。备注
此方法的 bytearray 版本 并非 原地操作 —— 它总是产生一个新对象,即便没有做任何改变。
- bytes.title()¶
- bytearray.title()¶
返回原二进制序列的标题版本,其中每个单词以一个大写 ASCII 字符为开头,其余字母为小写。 不区别大小写的字节值将保持原样不变。
例如:
>>> b'Hello world'.title() b'Hello World'
小写 ASCII 字符就是字节值包含在序列
b'abcdefghijklmnopqrstuvwxyz'
中的字符。 大写 ASCII 字符就是字节值包含在序列b'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
中的字符。 所有其他字节值都不区分大小写。该算法使用一种简单的与语言无关的定义,将连续的字母组合视为单词。 该定义在多数情况下都很有效,但它也意味着代表缩写形式与所有格的撇号也会成为单词边界,这可能导致不希望的结果:
>>> b"they're bill's friends from the UK".title() b"They'Re Bill'S Friends From The Uk"
可以使用正则表达式来构建针对撇号的特别处理:
>>> import re >>> def titlecase(s): ... return re.sub(rb"[A-Za-z]+('[A-Za-z]+)?", ... lambda mo: mo.group(0)[0:1].upper() + ... mo.group(0)[1:].lower(), ... s) ... >>> titlecase(b"they're bill's friends.") b"They're Bill's Friends."
备注
此方法的 bytearray 版本 并非 原地操作 —— 它总是产生一个新对象,即便没有做任何改变。
printf
风格的字节串格式化¶
备注
此处介绍的格式化操作具有多种怪异特性,可能导致许多常见错误(例如无法正确显示元组和字典)。 如果要打印的值可能为元组或字典,请将其放入一个元组中。
字节串对象 (bytes
/bytearray
) 具有一种特殊的内置操作:使用 %
(取模) 运算符。 这也被称为字节串的 格式化 或 插值 运算符。 对于 format % values
(其中 format 为一个字节串对象),在 format 中的 %
转换标记符将被替换为零个或多个 values 条目。 其效果类似于在 C 语言中使用 sprintf()
。
如果 format 要求一个单独参数,则 values 可以为一个非元组对象。 5 否则的话,values 必须或是是一个包含项数与格式字节串对象中指定的转换符项数相同的元组,或者是一个单独的映射对象(例如元组)。
转换标记符包含两个或更多字符并具有以下组成,且必须遵循此处规定的顺序:
'%'
字符,用于标记转换符的起始。映射键(可选),由加圆括号的字符序列组成 (例如
(somename)
)。转换旗标(可选),用于影响某些转换类型的结果。
最小字段宽度(可选)。 如果指定为
'*'
(星号),则实际宽度会从 values 元组的下一元素中读取,要转换的对象则为最小字段宽度和可选的精度之后的元素。精度(可选),以在
'.'
(点号) 之后加精度值的形式给出。 如果指定为'*'
(星号),则实际精度会从 values 元组的下一元素中读取,要转换的对象则为精度之后的元素。长度修饰符(可选)。
转换类型。
当右边的参数为一个字典(或其他映射类型)时,字节串对象中的格式 必须 包含加圆括号的映射键,对应 '%'
字符之后字典中的每一项。 映射键将从映射中选取要格式化的值。 例如:
>>> print(b'%(language)s has %(number)03d quote types.' %
... {b'language': b"Python", b"number": 2})
b'Python has 002 quote types.'
在此情况下格式中不能出现 *
标记符(因其需要一个序列类的参数列表)。
转换旗标为:
旗标 |
含意 |
---|---|
|
值的转换将使用“替代形式”(具体定义见下文)。 |
|
转换将为数字值填充零字符。 |
|
转换值将靠左对齐(如果同时给出 |
|
(空格) 符号位转换产生的正数(或空字符串)前将留出一个空格。 |
|
符号字符 ( |
可以给出长度修饰符 (h
, l
或 L
),但会被忽略,因为对 Python 来说没有必要 – 所以 %ld
等价于 %d
。
转换类型为:
转换符 |
含意 |
备注 |
---|---|---|
|
有符号十进制整数。 |
|
|
有符号十进制整数。 |
|
|
有符号八进制数。 |
(1) |
|
过时类型 – 等价于 |
(8) |
|
有符号十六进制数(小写)。 |
(2) |
|
有符号十六进制数(大写)。 |
(2) |
|
浮点指数格式(小写)。 |
(3) |
|
浮点指数格式(大写)。 |
(3) |
|
浮点十进制格式。 |
(3) |
|
浮点十进制格式。 |
(3) |
|
浮点格式。 如果指数小于 -4 或不小于精度则使用小写指数格式,否则使用十进制格式。 |
(4) |
|
浮点格式。 如果指数小于 -4 或不小于精度则使用大写指数格式,否则使用十进制格式。 |
(4) |
|
单个字节(接受整数或单个字节对象)。 |
|
|
字节串(任何遵循 缓冲区协议 或是具有 |
(5) |
|
|
(6) |
|
Bytes (converts any Python object using
|
(5) |
|
|
(7) |
|
不转换参数,在结果中输出一个 |
注释:
此替代形式会在第一个数码之前插入标示八进制数的前缀 (
'0o'
)。此替代形式会在第一个数码之前插入
'0x'
或'0X'
前缀(取决于是使用'x'
还是'X'
格式)。此替代形式总是会在结果中包含一个小数点,即使其后并没有数码。
小数点后的数码位数由精度决定,默认为 6。
此替代形式总是会在结果中包含一个小数点,末尾各位的零不会如其他情况下那样被移除。
小数点前后的有效数码位数由精度决定,默认为 6。
如果精度为
N
,输出将截短为N
个字符。b'%s'
已弃用,但在 3.x 系列中将不会被移除。b'%r'
已弃用,但在 3.x 系列中将不会被移除。参见 PEP 237。
备注
此方法的 bytearray 版本 并非 原地操作 —— 它总是产生一个新对象,即便没有做任何改变。
参见
PEP 461 - 为 bytes 和 bytearray 添加 % 格式化
3.5 新版功能.
内存视图¶
memoryview
对象允许 Python 代码访问一个对象的内部数据,只要该对象支持 缓冲区协议 而无需进行拷贝。
- class memoryview(object)¶
创建一个引用 object 的
memoryview
。 object 必须支持缓冲区协议。支持缓冲区协议的内置对象有bytes
和bytearray
。memoryview
有 元素 的概念, 元素 指由原始 object 处理的原子内存单元。对于许多简单的类型,如bytes
和bytearray
,一个元素是一个字节,但其他类型,如array.array
可能有更大的元素。len(view)
与tolist
的长度相等。 如果view.ndim = 0
,则其长度为 1。 如果view.ndim = 1
,则其长度等于 view 中元素的数量。 对于更高的维度,其长度等于表示 view 的嵌套列表的长度。itemsize
属性可向你给出单个元素所占的字节数。memoryview
支持通过切片和索引访问其元素。 一维切片的结果将是一个子视图:>>> v = memoryview(b'abcefg') >>> v[1] 98 >>> v[-1] 103 >>> v[1:4] <memory at 0x7f3ddc9f4350> >>> bytes(v[1:4]) b'bce'
如果
format
是一个来自于struct
模块的原生格式说明符,则也支持使用整数或由整数构成的元组进行索引,并返回具有正确类型的单个 元素。 一维内存视图可以使用一个整数或由一个整数构成的元组进行索引。 多维内存视图可以使用由恰好 ndim 个整数构成的元素进行索引,ndim 即其维度。 零维内存视图可以使用空元组进行索引。这里是一个使用非字节格式的例子:
>>> import array >>> a = array.array('l', [-11111111, 22222222, -33333333, 44444444]) >>> m = memoryview(a) >>> m[0] -11111111 >>> m[-1] 44444444 >>> m[::2].tolist() [-11111111, -33333333]
如果下层对象是可写的,则内存视图支持一维切片赋值。 改变大小则不被允许:
>>> data = bytearray(b'abcefg') >>> v = memoryview(data) >>> v.readonly False >>> v[0] = ord(b'z') >>> data bytearray(b'zbcefg') >>> v[1:4] = b'123' >>> data bytearray(b'z123fg') >>> v[2:3] = b'spam' Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: memoryview assignment: lvalue and rvalue have different structures >>> v[2:6] = b'spam' >>> data bytearray(b'z1spam')
由带有格式符号 ‘B’, ‘b’ 或 ‘c’ 的可哈希(只读)类型构成的一维内存视图同样是可哈希的。 哈希定义为
hash(m) == hash(m.tobytes())
:>>> v = memoryview(b'abcefg') >>> hash(v) == hash(b'abcefg') True >>> hash(v[2:4]) == hash(b'ce') True >>> hash(v[::-2]) == hash(b'abcefg'[::-2]) True
在 3.3 版更改: 一维内存视图现在可以被切片。 带有格式符号 ‘B’, ‘b’ 或 ‘c’ 的一维内存视图现在是可哈希的。
在 3.4 版更改: 内存视图现在会自动注册为
collections.abc.Sequence
在 3.5 版更改: 内存视图现在可使用整数元组进行索引。
memoryview
具有以下一些方法:- __eq__(exporter)¶
memoryview 与 PEP 3118 中的导出器这两者如果形状相同,并且如果当使用
struct
语法解读操作数的相应格式代码时所有对应值都相同,则它们就是等价的。对于
tolist()
当前所支持的struct
格式字符串子集,如果v.tolist() == w.tolist()
则v
和w
相等:>>> import array >>> a = array.array('I', [1, 2, 3, 4, 5]) >>> b = array.array('d', [1.0, 2.0, 3.0, 4.0, 5.0]) >>> c = array.array('b', [5, 3, 1]) >>> x = memoryview(a) >>> y = memoryview(b) >>> x == a == y == b True >>> x.tolist() == a.tolist() == y.tolist() == b.tolist() True >>> z = y[::-2] >>> z == c True >>> z.tolist() == c.tolist() True
如果两边的格式字符串都不被
struct
模块所支持,则两对象比较结果总是不相等(即使格式字符串和缓冲区内容相同):>>> from ctypes import BigEndianStructure, c_long >>> class BEPoint(BigEndianStructure): ... _fields_ = [("x", c_long), ("y", c_long)] ... >>> point = BEPoint(100, 200) >>> a = memoryview(point) >>> b = memoryview(point) >>> a == point False >>> a == b False
请注意,与浮点数的情况一样,对于内存视图对象来说,
v is w
也 并不 意味着v == w
。在 3.3 版更改: 之前的版本比较原始内存时会忽略条目的格式与逻辑数组结构。
- tobytes(order='C')¶
将缓冲区中的数据作为字节串返回。 这相当于在内存视图上调用
bytes
构造器。>>> m = memoryview(b"abc") >>> m.tobytes() b'abc' >>> bytes(m) b'abc'
对于非连续数组,结果等于平面化表示的列表,其中所有元素都转换为字节串。
tobytes()
支持所有格式字符串,不符合struct
模块语法的那些也包括在内。3.8 新版功能: order 可以为 {‘C’, ‘F’, ‘A’}。 当 order 为 ‘C’ 或 ‘F’ 时,原始数组的数据会被转换至 C 或 Fortran 顺序。 对于连续视图,’A’ 会返回物理内存的精确副本。 特别地,内存中的 Fortran 顺序会被保留。对于非连续视图,数据会先被转换为 C 形式。 order=None 与 order=’C’ 是相同的。
- hex([sep[, bytes_per_sep]])¶
返回一个字符串对象,其中分别以两个十六进制数码表示缓冲区里的每个字节。
>>> m = memoryview(b"abc") >>> m.hex() '616263'
3.5 新版功能.
在 3.8 版更改: 与
bytes.hex()
相似,memoryview.hex()
现在支持可选的 sep 和 bytes_per_sep 参数以在十六进制输出的字节之间插入分隔符。
- tolist()¶
将缓冲区内的数据以一个元素列表的形式返回。
>>> memoryview(b'abc').tolist() [97, 98, 99] >>> import array >>> a = array.array('d', [1.1, 2.2, 3.3]) >>> m = memoryview(a) >>> m.tolist() [1.1, 2.2, 3.3]
- toreadonly()¶
返回 memoryview 对象的只读版本。 原始的 memoryview 对象不会被改变。
>>> m = memoryview(bytearray(b'abc')) >>> mm = m.toreadonly() >>> mm.tolist() [89, 98, 99] >>> mm[0] = 42 Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: cannot modify read-only memory >>> m[0] = 43 >>> mm.tolist() [43, 98, 99]
3.8 新版功能.
- release()¶
释放由内存视图对象所公开的底层缓冲区。 许多对象在被视图所获取时都会采取特殊动作(例如,
bytearray
将会暂时禁止调整大小);因此,调用 release() 可以方便地尽早去除这些限制(并释放任何多余的资源)。在此方法被调用后,任何对视图的进一步操作将引发
ValueError
(release()
本身除外,它可以被多次调用):>>> m = memoryview(b'abc') >>> m.release() >>> m[0] Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: operation forbidden on released memoryview object
使用
with
语句,可以通过上下文管理协议达到类似的效果:>>> with memoryview(b'abc') as m: ... m[0] ... 97 >>> m[0] Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: operation forbidden on released memoryview object
3.2 新版功能.
- cast(format[, shape])¶
将内存视图转化为新的格式或形状。 shape 默认为
[byte_length//new_itemsize]
,这意味着结果视图将是一维的。 返回值是一个新的内存视图,但缓冲区本身不会被复制。 支持的转化有 1D -> C-contiguous 和 C-contiguous -> 1D。目标格式仅限于
struct
语法中的单一元素原生格式。 其中一种格式必须为字节格式 (‘B’, ‘b’ 或 ‘c’)。 结果的字节长度必须与原始长度相同。将 1D/long 转换为 1D/unsigned bytes:
>>> import array >>> a = array.array('l', [1,2,3]) >>> x = memoryview(a) >>> x.format 'l' >>> x.itemsize 8 >>> len(x) 3 >>> x.nbytes 24 >>> y = x.cast('B') >>> y.format 'B' >>> y.itemsize 1 >>> len(y) 24 >>> y.nbytes 24
将 1D/unsigned bytes 转换为 1D/char:
>>> b = bytearray(b'zyz') >>> x = memoryview(b) >>> x[0] = b'a' Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: memoryview: invalid value for format "B" >>> y = x.cast('c') >>> y[0] = b'a' >>> b bytearray(b'ayz')
将 1D/bytes 转换为 3D/ints 再转换为 1D/signed char:
>>> import struct >>> buf = struct.pack("i"*12, *list(range(12))) >>> x = memoryview(buf) >>> y = x.cast('i', shape=[2,2,3]) >>> y.tolist() [[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]]] >>> y.format 'i' >>> y.itemsize 4 >>> len(y) 2 >>> y.nbytes 48 >>> z = y.cast('b') >>> z.format 'b' >>> z.itemsize 1 >>> len(z) 48 >>> z.nbytes 48
将 1D/unsigned long 转换为 2D/unsigned long:
>>> buf = struct.pack("L"*6, *list(range(6))) >>> x = memoryview(buf) >>> y = x.cast('L', shape=[2,3]) >>> len(y) 2 >>> y.nbytes 48 >>> y.tolist() [[0, 1, 2], [3, 4, 5]]
3.3 新版功能.
在 3.5 版更改: 当转换为字节视图时,源格式将不再受限。
还存在一些可用的只读属性:
- obj¶
内存视图的下层对象:
>>> b = bytearray(b'xyz') >>> m = memoryview(b) >>> m.obj is b True
3.3 新版功能.
- nbytes¶
nbytes == product(shape) * itemsize == len(m.tobytes())
。 这是数组在连续表示时将会占用的空间总字节数。 它不一定等于len(m)
:>>> import array >>> a = array.array('i', [1,2,3,4,5]) >>> m = memoryview(a) >>> len(m) 5 >>> m.nbytes 20 >>> y = m[::2] >>> len(y) 3 >>> y.nbytes 12 >>> len(y.tobytes()) 12
多维数组:
>>> import struct >>> buf = struct.pack("d"*12, *[1.5*x for x in range(12)]) >>> x = memoryview(buf) >>> y = x.cast('d', shape=[3,4]) >>> y.tolist() [[0.0, 1.5, 3.0, 4.5], [6.0, 7.5, 9.0, 10.5], [12.0, 13.5, 15.0, 16.5]] >>> len(y) 3 >>> y.nbytes 96
3.3 新版功能.
- readonly¶
一个表明内存是否只读的布尔值。
- format¶
一个字符串,包含视图中每个元素的格式(表示为
struct
模块样式)。 内存视图可以从具有任意格式字符串的导出器创建,但某些方法 (例如tolist()
) 仅限于原生的单元素格式。在 3.3 版更改: 格式
'B'
现在会按照 struct 模块语法来处理。 这意味着memoryview(b'abc')[0] == b'abc'[0] == 97
。
- itemsize¶
memoryview 中每个元素以字节表示的大小:
>>> import array, struct >>> m = memoryview(array.array('H', [32000, 32001, 32002])) >>> m.itemsize 2 >>> m[0] 32000 >>> struct.calcsize('H') == m.itemsize True
- ndim¶
一个整数,表示内存所代表的多维数组具有多少个维度。
- suboffsets¶
供 PIL 风格的数组内部使用。 该值仅作为参考信息。
- c_contiguous¶
一个表明内存是否为 C-contiguous 的布尔值。
3.3 新版功能.
- f_contiguous¶
一个表明内存是否为 Fortran contiguous 的布尔值。
3.3 新版功能.
- contiguous¶
一个表明内存是否为 contiguous 的布尔值。
3.3 新版功能.
集合类型 — set
, frozenset
¶
set 对象是由具有唯一性的 hashable 对象所组成的无序多项集。 常见的用途包括成员检测、从序列中去除重复项以及数学中的集合类计算,例如交集、并集、差集与对称差集等等。 (关于其他容器对象请参看 dict
, list
与 tuple
等内置类,以及 collections
模块。)
与其他多项集一样,集合也支持 x in set
, len(set)
和 for x in set
。 作为一种无序的多项集,集合并不记录元素位置或插入顺序。 相应地,集合不支持索引、切片或其他序列类的操作。
目前有两种内置集合类型,set
和 frozenset
。 set
类型是可变的 — 其内容可以使用 add()
和 remove()
这样的方法来改变。 由于是可变类型,它没有哈希值,且不能被用作字典的键或其他集合的元素。 frozenset
类型是不可变并且为 hashable — 其内容在被创建后不能再改变;因此它可以被用作字典的键或其他集合的元素。
除了可以使用 set
构造器,非空的 set (不是 frozenset) 还可以通过将以逗号分隔的元素列表包含于花括号之内来创建,例如: {'jack', 'sjoerd'}
。
两个类的构造器具有相同的作用方式:
- class set([iterable])¶
- class frozenset([iterable])¶
返回一个新的 set 或 frozenset 对象,其元素来自于 iterable。 集合的元素必须为 hashable。 要表示由集合对象构成的集合,所有的内层集合必须为
frozenset
对象。 如果未指定 iterable,则将返回一个新的空集合。集合可用多种方式来创建:
使用花括号内以逗号分隔元素的方式:
{'jack', 'sjoerd'}
使用集合推导式:
{c for c in 'abracadabra' if c not in 'abc'}
使用类型构造器:
set()
,set('foobar')
,set(['a', 'b', 'foo'])
- len(s)
返回集合 s 中的元素数量(即 s 的基数)。
- x in s
检测 x 是否为 s 中的成员。
- x not in s
检测 x 是否非 s 中的成员。
- isdisjoint(other)¶
如果集合中没有与 other 共有的元素则返回
True
。 当且仅当两个集合的交集为空集合时,两者为不相交集合。
- issubset(other)¶
- set <= other
检测是否集合中的每个元素都在 other 之中。
- set < other
检测集合是否为 other 的真子集,即
set <= other and set != other
。
- issuperset(other)¶
- set >= other
检测是否 other 中的每个元素都在集合之中。
- set > other
检测集合是否为 other 的真超集,即
set >= other and set != other
。
- union(*others)¶
- set | other | ...
返回一个新集合,其中包含来自原集合以及 others 指定的所有集合中的元素。
- intersection(*others)¶
- set & other & ...
返回一个新集合,其中包含原集合以及 others 指定的所有集合中共有的元素。
- difference(*others)¶
- set - other - ...
返回一个新集合,其中包含原集合中在 others 指定的其他集合中不存在的元素。
- symmetric_difference(other)¶
- set ^ other
返回一个新集合,其中的元素或属于原集合或属于 other 指定的其他集合,但不能同时属于两者。
- copy()¶
返回原集合的浅拷贝。
注意,
union()
、intersection()
、difference()
、symmetric_difference()
、issubset()
和issuperset()
方法的非运算符版本可以接受任何可迭代对象作为一个参数。相比之下,基于运算符的对应方法则要求参数为集合对象。这就避开了像set('abc') & 'cbs'
这样容易出错的结构,而换成了可读性更好的set('abc').intersection('cbs')
。set
和frozenset
均支持集合与集合的比较。 两个集合当且仅当每个集合中的每个元素均包含于另一个集合之内(即各为对方的子集)时则相等。 一个集合当且仅当其为另一个集合的真子集(即为后者的子集但两者不相等)时则小于另一个集合。 一个集合当且仅当其为另一个集合的真超集(即为后者的超集但两者不相等)时则大于另一个集合。set
的实例与frozenset
的实例之间基于它们的成员进行比较。 例如set('abc') == frozenset('abc')
返回True
,set('abc') in set([frozenset('abc')])
也一样。子集与相等比较并不能推广为完全排序函数。 例如,任意两个非空且不相交的集合不相等且互不为对方的子集,因此以下 所有 比较均返回
False
:a<b
,a==b
, ora>b
。由于集合仅定义了部分排序(子集关系),因此由集合构成的列表
list.sort()
方法的输出并无定义。集合的元素,与字典的键类似,必须为 hashable。
混合了
set
实例与frozenset
的二进制位运算将返回与第一个操作数相同的类型。例如:frozenset('ab') | set('bc')
将返回frozenset
的实例。下表列出了可用于
set
而不能用于不可变的frozenset
实例的操作:- update(*others)¶
- set |= other | ...
更新集合,添加来自 others 中的所有元素。
- intersection_update(*others)¶
- set &= other & ...
更新集合,只保留其中在所有 others 中也存在的元素。
- difference_update(*others)¶
- set -= other | ...
更新集合,移除其中也存在于 others 中的元素。
- symmetric_difference_update(other)¶
- set ^= other
更新集合,只保留存在于集合的一方而非共同存在的元素。
- add(elem)¶
将元素 elem 添加到集合中。
- discard(elem)¶
如果元素 elem 存在于集合中则将其移除。
- clear()¶
从集合中移除所有元素。
请注意,非运算符版本的
update()
,intersection_update()
,difference_update()
和symmetric_difference_update()
方法将接受任意可迭代对象作为参数。请注意,
__contains__()
,remove()
和discard()
方法的 elem 参数可能是一个 set。 为支持对一个等价的 frozenset 进行搜索,会根据 elem 临时创建一个该类型对象。
映射类型 — dict
¶
mapping 对象会将 hashable 值映射到任意对象。 映射属于可变对象。 目前仅有一种标准映射类型 字典。 (关于其他容器对象请参看 list
, set
与 tuple
等内置类,以及 collections
模块。)
字典的键 几乎 可以是任何值。 非 hashable 的值,即包含列表、字典或其他可变类型的值(此类对象基于值而非对象标识进行比较)不可用作键。 数字类型用作键时遵循数字比较的一般规则:如果两个数值相等 (例如 1
和 1.0
) 则两者可以被用来索引同一字典条目。 (但是请注意,由于计算机对于浮点数存储的只是近似值,因此将其用作字典键是不明智的。)
- class dict(**kwargs)¶
- class dict(mapping, **kwargs)
- class dict(iterable, **kwargs)
返回一个新的字典,基于可选的位置参数和可能为空的关键字参数集来初始化。
字典可用多种方式来创建:
使用花括号内以逗号分隔
键: 值
对的方式:{'jack': 4098, 'sjoerd': 4127}
or{4098: 'jack', 4127: 'sjoerd'}
使用字典推导式:
{}
,{x: x ** 2 for x in range(10)}
使用类型构造器:
dict()
,dict([('foo', 100), ('bar', 200)])
,dict(foo=100, bar=200)
如果没有给出位置参数,将创建一个空字典。 如果给出一个位置参数并且其属于映射对象,将创建一个具有与映射对象相同键值对的字典。 否则的话,位置参数必须为一个 iterable 对象。 该可迭代对象中的每一项本身必须为一个刚好包含两个元素的可迭代对象。 每一项中的第一个对象将成为新字典的一个键,第二个对象将成为其对应的值。 如果一个键出现一次以上,该键的最后一个值将成为其在新字典中对应的值。
如果给出了关键字参数,则关键字参数及其值会被加入到基于位置参数创建的字典。 如果要加入的键已存在,来自关键字参数的值将替代来自位置参数的值。
作为演示,以下示例返回的字典均等于
{"one": 1, "two": 2, "three": 3}
:>>> a = dict(one=1, two=2, three=3) >>> b = {'one': 1, 'two': 2, 'three': 3} >>> c = dict(zip(['one', 'two', 'three'], [1, 2, 3])) >>> d = dict([('two', 2), ('one', 1), ('three', 3)]) >>> e = dict({'three': 3, 'one': 1, 'two': 2}) >>> f = dict({'one': 1, 'three': 3}, two=2) >>> a == b == c == d == e == f True
像第一个例子那样提供关键字参数的方式只能使用有效的 Python 标识符作为键。 其他方式则可使用任何有效的键。
这些是字典所支持的操作(因而自定义的映射类型也应当支持):
- list(d)
返回字典 d 中使用的所有键的列表。
- len(d)
返回字典 d 中的项数。
- d[key]
返回 d 中以 key 为键的项。 如果映射中不存在 key 则会引发
KeyError
。如果字典的子类定义了方法
__missing__()
并且 key 不存在,则d[key]
操作将调用该方法并附带键 key 作为参数。d[key]
随后将返回或引发__missing__(key)
调用所返回或引发的任何对象或异常。 没有其他操作或方法会发起调用__missing__()
。 如果未定义__missing__()
,则会引发KeyError
。__missing__()
必须是一个方法;它不能是一个实例变量:>>> class Counter(dict): ... def __missing__(self, key): ... return 0 >>> c = Counter() >>> c['red'] 0 >>> c['red'] += 1 >>> c['red'] 1
上面的例子显示了
collections.Counter
实现的部分代码。 还有另一个不同的__missing__
方法是由collections.defaultdict
所使用的。
- d[key] = value
将
d[key]
设为 value。
- del d[key]
将
d[key]
从 d 中移除。 如果映射中不存在 key 则会引发KeyError
。
- key in d
如果 d 中存在键 key 则返回
True
,否则返回False
。
- key not in d
等价于
not key in d
。
- iter(d)
返回以字典的键为元素的迭代器。 这是
iter(d.keys())
的快捷方式。
- clear()¶
移除字典中的所有元素。
- copy()¶
返回原字典的浅拷贝。
- classmethod fromkeys(iterable[, value])¶
使用来自 iterable 的键创建一个新字典,并将键值设为 value。
fromkeys()
是一个返回新字典的类方法。 value 默认为None
。 所有值都只引用一个单独的实例,因此让 value 成为一个可变对象例如空列表通常是没有意义的。 要获取不同的值,请改用 字典推导式。
- get(key[, default])¶
如果 key 存在于字典中则返回 key 的值,否则返回 default。 如果 default 未给出则默认为
None
,因而此方法绝不会引发KeyError
。
- pop(key[, default])¶
如果 key 存在于字典中则将其移除并返回其值,否则返回 default。 如果 default 未给出且 key 不存在于字典中,则会引发
KeyError
。
- popitem()¶
从字典中移除并返回一个
(键, 值)
对。 键值对会按 LIFO 的顺序被返回。popitem()
适用于对字典进行消耗性的迭代,这在集合算法中经常被使用。 如果字典为空,调用popitem()
将引发KeyError
。在 3.7 版更改: 现在会确保采用 LIFO 顺序。 在之前的版本中,
popitem()
会返回一个任意的键/值对。
- reversed(d)
返回一个逆序获取字典键的迭代器。 这是
reversed(d.keys())
的快捷方式。3.8 新版功能.
- setdefault(key[, default])¶
如果字典存在键 key ,返回它的值。如果不存在,插入值为 default 的键 key ,并返回 default 。 default 默认为
None
。
- update([other])¶
使用来自 other 的键/值对更新字典,覆盖原有的键。 返回
None
。update()
接受另一个字典对象,或者一个包含键/值对(以长度为二的元组或其他可迭代对象表示)的可迭代对象。 如果给出了关键字参数,则会以其所指定的键/值对更新字典:d.update(red=1, blue=2)
。
- values()¶
返回由字典值组成的一个新视图。 参见 视图对象文档。
两个
dict.values()
视图之间的相等性比较将总是返回False
。 这在dict.values()
与其自身比较时也同样适用:>>> d = {'a': 1} >>> d.values() == d.values() False
- d | other
合并 d 和 other 中的键和值来创建一个新的字典,两者必须都是字典。当 d 和 other 有相同键时, other 的值优先。
3.9 新版功能.
- d |= other
用 other 的键和值更新字典 d ,other 可以是 mapping 或 iterable 的键值对。当 d 和 other 有相同键时, other 的值优先。
3.9 新版功能.
两个字典的比较当且仅当它们具有相同的
(键, 值)
对时才会相等(不考虑顺序)。 排序比较 (‘<’, ‘<=’, ‘>=’, ‘>’) 会引发TypeError
。字典会保留插入时的顺序。 请注意对键的更新不会影响顺序。 删除并再次添加的键将被插入到末尾。
>>> d = {"one": 1, "two": 2, "three": 3, "four": 4} >>> d {'one': 1, 'two': 2, 'three': 3, 'four': 4} >>> list(d) ['one', 'two', 'three', 'four'] >>> list(d.values()) [1, 2, 3, 4] >>> d["one"] = 42 >>> d {'one': 42, 'two': 2, 'three': 3, 'four': 4} >>> del d["two"] >>> d["two"] = None >>> d {'one': 42, 'three': 3, 'four': 4, 'two': None}
在 3.7 版更改: 字典顺序会确保为插入顺序。 此行为是自 3.6 版开始的 CPython 实现细节。
字典和字典视图都是可逆的。
>>> d = {"one": 1, "two": 2, "three": 3, "four": 4} >>> d {'one': 1, 'two': 2, 'three': 3, 'four': 4} >>> list(reversed(d)) ['four', 'three', 'two', 'one'] >>> list(reversed(d.values())) [4, 3, 2, 1] >>> list(reversed(d.items())) [('four', 4), ('three', 3), ('two', 2), ('one', 1)]
在 3.8 版更改: 字典现在是可逆的。
参见
types.MappingProxyType
可被用来创建一个 dict
的只读视图。
字典视图对象¶
由 dict.keys()
, dict.values()
和 dict.items()
所返回的对象是 视图对象。 该对象提供字典条目的一个动态视图,这意味着当字典改变时,视图也会相应改变。
字典视图可以被迭代以产生与其对应的数据,并支持成员检测:
- len(dictview)
返回字典中的条目数。
- iter(dictview)
返回字典中的键、值或项(以
(键, 值)
为元素的元组表示)的迭代器。键和值是按插入时的顺序进行迭代的。 这样就允许使用
zip()
来创建(值, 键)
对:pairs = zip(d.values(), d.keys())
。 另一个创建相同列表的方式是pairs = [(v, k) for (k, v) in d.items()]
.在添加或删除字典中的条目期间对视图进行迭代可能引发
RuntimeError
或者无法完全迭代所有条目。在 3.7 版更改: 字典顺序会确保为插入顺序。
- x in dictview
如果 x 是对应字典中存在的键、值或项(在最后一种情况下 x 应为一个
(键, 值)
元组) 则返回True
。
- reversed(dictview)
返回一个逆序获取字典键、值或项的迭代器。 视图将按与插入时相反的顺序进行迭代。
在 3.8 版更改: 字典视图现在是可逆的。
- dictview.mapping
返回
types.MappingProxyType
对象,封装了字典视图指向的原始字典。3.10 新版功能.
Keys views are set-like since their entries are unique and hashable. If all
values are hashable, so that (key, value)
pairs are unique and hashable,
then the items view is also set-like. (Values views are not treated as set-like
since the entries are generally not unique.) For set-like views, all of the
operations defined for the abstract base class collections.abc.Set
are
available (for example, ==
, <
, or ^
). While using set operators,
set-like views accept any iterable as the other operand, unlike sets which only
accept sets as the input.
一个使用字典视图的示例:
>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
>>> keys = dishes.keys()
>>> values = dishes.values()
>>> # iteration
>>> n = 0
>>> for val in values:
... n += val
>>> print(n)
504
>>> # keys and values are iterated over in the same order (insertion order)
>>> list(keys)
['eggs', 'sausage', 'bacon', 'spam']
>>> list(values)
[2, 1, 1, 500]
>>> # view objects are dynamic and reflect dict changes
>>> del dishes['eggs']
>>> del dishes['sausage']
>>> list(keys)
['bacon', 'spam']
>>> # set operations
>>> keys & {'eggs', 'bacon', 'salad'}
{'bacon'}
>>> keys ^ {'sausage', 'juice'}
{'juice', 'sausage', 'bacon', 'spam'}
>>> keys | ['juice', 'juice', 'juice']
{'juice', 'sausage', 'bacon', 'spam', 'eggs'}
>>> # get back a read-only proxy for the original dictionary
>>> values.mapping
mappingproxy({'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500})
>>> values.mapping['spam']
500
上下文管理器类型¶
Python 的 with
语句支持通过上下文管理器所定义的运行时上下文这一概念。 此对象的实现使用了一对专门方法,允许用户自定义类来定义运行时上下文,在语句体被执行前进入该上下文,并在语句执行完毕时退出该上下文:
- contextmanager.__enter__()¶
进入运行时上下文并返回此对象或关联到该运行时上下文的其他对象。 此方法的返回值会绑定到使用此上下文管理器的
with
语句的as
子句中的标识符。一个返回其自身的上下文管理器的例子是 file object。 文件对象会从 __enter__() 返回其自身,以允许
open()
被用作with
语句中的上下文表达式。一个返回关联对象的上下文管理器的例子是
decimal.localcontext()
所返回的对象。 此种管理器会将活动的 decimal 上下文设为原始 decimal 上下文的一个副本并返回该副本。 这允许对with
语句的语句体中的当前 decimal 上下文进行更改,而不会影响with
语句以外的代码。
- contextmanager.__exit__(exc_type, exc_val, exc_tb)¶
退出运行时上下文并返回一个布尔值旗标来表明所发生的任何异常是否应当被屏蔽。 如果在执行
with
语句的语句体期间发生了异常,则参数会包含异常的类型、值以及回溯信息。 在其他情况下三个参数均为None
。自此方法返回一个真值将导致
with
语句屏蔽异常并继续执行紧随在with
语句之后的语句。 否则异常将在此方法结束执行后继续传播。 在此方法执行期间发生的异常将会取代with
语句的语句体中发生的任何异常。传入的异常绝对不应当被显式地重新引发 —— 相反地,此方法应当返回一个假值以表明方法已成功完成并且不希望屏蔽被引发的异常。 这允许上下文管理代码方便地检测
__exit__()
方法是否确实已失败。
Python 定义了一些上下文管理器来支持简易的线程同步、文件或其他对象的快速关闭,以及更方便地操作活动的十进制算术上下文。 除了实现上下文管理协议以外,不同类型不会被特殊处理。 请参阅 contextlib
模块查看相关的示例。
Python’s generators and the contextlib.contextmanager
decorator
provide a convenient way to implement these protocols. If a generator function is
decorated with the contextlib.contextmanager
decorator, it will return a
context manager implementing the necessary __enter__()
and
__exit__()
methods, rather than the iterator produced by an
undecorated generator function.
请注意,Python/C API 中 Python 对象的类型结构中并没有针对这些方法的专门槽位。 想要定义这些方法的扩展类型必须将它们作为普通的 Python 可访问方法来提供。 与设置运行时上下文的开销相比,单个类字典查找的开销可以忽略不计。
类型注解的类型 — Generic Alias 、 Union¶
type annotations 的内置类型为 Generic Alias 和 Union。
GenericAlias 类型¶
GenericAlias
对象通常由 subscripting 类创建。它们最常与 container classes 一起使用,例如 list
或 dict
。例如,list[int]
是一个 GenericAlias
对象,它是通过将 list
类用 argument int
下标创建的。GenericAlias
对象主要用于 type annotation。
备注
通常只有当类实现了特殊方法 __class_getitem__()
时,才可能对类进行下标。
GenericAlias
对象充当 generic type 的代理,实现 参数化泛型 。”
对于容器类,提供给类的 subscription 的实参可以指示对象所包含元素的类型。例如,set[bytes]
可以用在类型注释中来表示 set
,其中所有元素的类型都是 bytes
。
对于定义 __class_getitem__()
但不是容器,则提供给该类的下标的参数通常会指示对象上定义的一个或多个方法的返回类型。例如 正则表达式
可以在 str
数据类型和 bytes
数据类型上使用:
如果
x = re.search('foo', 'foo')
,x
将是 re.Match 对象,其中x.group(0)
和x[0]
的返回值都是str
。我们可以在类型注解中使用GenericAlias
re.Match[str]
来表示这类对象。如果
y = re.search(b'bar', b'bar')
,(注意bytes
的b
),y
也将是re.Match
的一个实例,但y.group(0)
和y[0]
的返回值都将是类型bytes
。在类型注释中,我们将使用re.Match[bytes]
表示 re.Match 的这种变体。
GenericAlias
对象是类 types.GenericAlias
的实例,它也可以用来直接创建 GenericAlias
对象。
- T[X, Y, ...]
创建
GenericAlias
,表示由类型 X, Y 参数化的类型T
,更多取决于使用的T
。例如,一个函数需要list
包含float
元素def average(values: list[float]) -> float: return sum(values) / len(values)
另一个例子是关于 mapping 对象的,用到了
dict
,泛型的两个类型参数分别代表了键类型和值类型。本例中的函数需要一个dict
,其键的类型为str
,值的类型为int
:。def send_post_request(url: str, body: dict[str, int]) -> None: ...
内置函数 isinstance()
和 issubclass()
不接受第二个参数为 GenericAlias
类型:
>>> isinstance([1, 2], list[str])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: isinstance() argument 2 cannot be a parameterized generic
Python 运行时不会强制执行 type annotations。这种方式延伸到了泛型及其类型参数。当由 GenericAlias
创建对象时,不会检查容器元素的类型。例如,以下代码虽不值得鼓励,但运行时不会出错
>>> t = list[str]
>>> t([1, 2, 3])
[1, 2, 3]
不仅如此,在创建对象的过程中,应用了参数后的泛型还会抹除类型参数:
>>> t = list[str]
>>> type(t)
<class 'types.GenericAlias'>
>>> l = t()
>>> type(l)
<class 'list'>
在泛型上调用 repr()
或 str()
会显示应用参数之后的类型:
>>> repr(list[int])
'list[int]'
>>> str(list[int])
'list[int]'
调用泛型的 __getitem__()
方法将触发异常,以防出现 dict[str][str]
之类的错误
>>> dict[str][str]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: There are no type variables left in dict[str]
不过在用到 type variables 时,这种表达式是有效的。索引元素数量必须与 GenericAlias
对象的 __args__
的类型变量项数一样。
>>> from typing import TypeVar
>>> Y = TypeVar('Y')
>>> dict[str, Y][int]
dict[str, int]
标准的泛型类¶
以下标准库类支持参数化泛型。这份清单并不详尽。
GenericAlias
对象的特殊属性¶
应用参数后的泛型都实现了一些特殊的只读属性:
- genericalias.__origin__¶
本属性指向未参数化的泛型类:
>>> list[int].__origin__ <class 'list'>
- genericalias.__args__¶
该属性是传递给泛型类的 original
__class_getitem__()
的泛型类型的tuple
(长度可能为 1):>>> dict[str, list[int]].__args__ (<class 'str'>, list[int])
- genericalias.__parameters__¶
该属性是延迟计算出来的一个元组(可能为空),包含了
__args__
中的类型变量。>>> from typing import TypeVar >>> T = TypeVar('T') >>> list[T].__parameters__ (~T,)
备注
带有参数
typing.ParamSpec
的GenericAlias
对象,在类型替换后其__parameters__
可能会不准确,因为typing.ParamSpec
主要用于静态类型检查。
- genericalias.__unpacked__¶
A boolean that is true if the alias has been unpacked using the
*
operator (seeTypeVarTuple
).3.11 新版功能.
参见
- PEP 484 —— 类型提示
引入 Python 的类型注解框架。
- PEP 585 - Type Hinting Generics In Standard Collections
Introducing the ability to natively parameterize standard-library classes, provided they implement the special class method
__class_getitem__()
.- 泛型(Generic), user-defined generics and
typing.Generic
Documentation on how to implement generic classes that can be parameterized at runtime and understood by static type-checkers.
3.9 新版功能.
union 类型¶
联合对象包含了在多个 类型对象 上执行 |
(按位或) 运算后的值。 这些类型主要用于 类型标注。与 typing.Union
相比,联合类型表达式可以实现更简洁的类型提示语法。
- X | Y | ...
定义包含了 X、Y 等类型的 union 对象。
X | Y
表示 X 或 Y。相当于typing.Union[X, Y]
。比如以下函数的参数应为类型int
或float
:def square(number: int | float) -> int | float: return number ** 2
- union_object == other
union 对象可与其他 union 对象进行比较。详细结果如下:
多次组合的结果会平推:
(int | str) | float == int | str | float
冗余的类型会被删除:
int | str | int == int | str
在相互比较时,会忽略顺序:
int | str == str | int
与
typing.union
兼容:int | str == typing.Union[int, str]
Optional 类型可表示为与
None
的组合。str | None == typing.Optional[str]
- isinstance(obj, union_object)
- issubclass(obj, union_object)
isinstance()
和issubclass()
也支持 union 对象:>>> isinstance("", int | str) True
但不能使用包含 parameterized generics 的 union 对象:
>>> isinstance(1, int | list[int]) Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: isinstance() argument 2 cannot contain a parameterized generic
union 对象构成的用户类型可以经由 types.UnionType
访问,并可用于 isinstance()
检查。 而不能由类型直接实例化为对象:
>>> import types
>>> isinstance(int | str, types.UnionType)
True
>>> types.UnionType()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: cannot create 'types.UnionType' instances
备注
为了支持 X | Y
语法,类型对象加入了 __or__()
方法。若是元类已实现了 __or__()
,union 也可以覆盖掉:
>>> class M(type):
... def __or__(self, other):
... return "Hello"
...
>>> class C(metaclass=M):
... pass
...
>>> C | int
'Hello'
>>> int | C
int | __main__.C
参见
PEP 604 —— 提出了 X | Y
语法和 union 类型。
3.10 新版功能.
其他内置类型¶
解释器支持一些其他种类的对象。 这些对象大都仅支持一两种操作。
模块¶
模块唯一的特殊操作是属性访问: m.name
,这里 m 为一个模块而 name 访问定义在 m 的符号表中的一个名称。 模块属性可以被赋值。 (请注意 import
语句严格来说也是对模块对象的一种操作;import foo
不要求存在一个名为 foo 的模块对象,而是要求存在一个对于名为 foo 的模块的 (永久性) 定义。)
每个模块都有一个特殊属性 __dict__
。 这是包含模块的符号表的字典。 修改此字典将实际改变模块的符号表,但是无法直接对 __dict__
赋值 (你可以写 m.__dict__['a'] = 1
,这会将 m.a
定义为 1
,但是你不能写 m.__dict__ = {}
)。 不建议直接修改 __dict__
。
内置于解释器中的模块会写成这样: <module 'sys' (built-in)>
。 如果是从一个文件加载,则会写成 <module 'os' from '/usr/local/lib/pythonX.Y/os.pyc'>
。
类与类实例¶
函数¶
函数对象是通过函数定义创建的。 对函数对象的唯一操作是调用它: func(argument-list)
。
实际上存在两种不同的函数对象:内置函数和用户自定义函数。 两者支持同样的操作(调用函数),但实现方式不同,因此对象类型也不同。
更多信息请参阅 函数定义。
方法¶
方法是使用属性表示法来调用的函数。 存在两种形式:内置方法(例如列表的 append()
方法)和类实例方法。 内置方法由支持它们的类型来描述。
如果你通过一个实例来访问方法(即定义在类命名空间内的函数),你会得到一个特殊对象: 绑定方法 (或称 实例方法) 对象。 当被调用时,它会将 self
参数添加到参数列表。 绑定方法具有两个特殊的只读属性: m.__self__
操作该方法的对象,而 m.__func__
是实现该方法的函数。 调用 m(arg-1, arg-2, ..., arg-n)
完全等价于调用 m.__func__(m.__self__, arg-1, arg-2, ..., arg-n)
。
与函数对象类似,绑定方法对象也支持获取任意属性。 但是,由于方法属性实际上保存于下层的函数对象中 (meth.__func__
),因此不允许设置绑定方法的方法属性。 尝试设置方法的属性将会导致引发 AttributeError
。 想要设置方法属性,你必须在下层的函数对象中显式地对其进行设置:
>>> class C:
... def method(self):
... pass
...
>>> c = C()
>>> c.method.whoami = 'my name is method' # can't set on the method
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'method' object has no attribute 'whoami'
>>> c.method.__func__.whoami = 'my name is method'
>>> c.method.whoami
'my name is method'
更多信息请参阅 标准类型层级结构。
代码对象¶
代码对象被具体实现用来表示“伪编译”的可执行 Python 代码,例如一个函数体。 它们不同于函数对象,因为它们不包含对其全局执行环境的引用。 代码对象由内置的 compile()
函数返回,并可通过从函数对象的 __code__
属性从中提取。 另请参阅 code
模块。
访问 __code__
会触发 审计事件 object.__getattr__
,参数为 obj
和 "__code__"
。
可以通过将代码对象(而非源码字符串)传给 exec()
或 eval()
内置函数来执行或求值。
更多信息请参阅 标准类型层级结构。
类型对象¶
类型对象表示各种对象类型。 对象的类型可通过内置函数 type()
来获取。 类型没有特殊的操作。 标准库模块 types
定义了所有标准内置类型的名称。
类型以这样的写法来表示: <class 'int'>
。
空对象¶
此对象会由不显式地返回值的函数所返回。 它不支持任何特殊的操作。 空对象只有一种值 None
(这是个内置名称)。 type(None)()
会生成同一个单例。
该对象的写法为 None
。
省略符对象¶
此对象常被用于切片 (参见 切片)。 它不支持任何特殊的操作。 省略符对象只有一种值 Ellipsis
(这是个内置名称)。 type(Ellipsis)()
会生成 Ellipsis
单例。
该对象的写法为 Ellipsis
或 ...
。
未实现对象¶
此对象会被作为比较和二元运算被应用于它们所不支持的类型时的返回值。请参阅 比较运算 了解更多信息。 未实现对象只有一种值 NotImplemented
。 type(NotImplemented)()
会生成这个单例。
该对象的写法为 NotImplemented
。
布尔值¶
布尔值是两个常量对象 False
和 True
。 它们被用来表示逻辑上的真假(不过其他值也可被当作真值或假值)。 在数字类的上下文中(例如被用作算术运算符的参数时),它们的行为分别类似于整数 0 和 1。 内置函数 bool()
可被用来将任意值转换为布尔值,只要该值可被解析为一个逻辑值(参见之前的 逻辑值检测 部分)。
该对象的写法分别为 False
和 True
。
内部对象¶
有关此对象的信息请参阅 标准类型层级结构。 其中描述了栈帧对象、回溯对象以及切片对象等等。
特殊属性¶
语言实现为部分对象类型添加了一些特殊的只读属性,它们具有各自的作用。 其中一些并不会被 dir()
内置函数所列出。
- object.__dict__¶
一个字典或其他类型的映射对象,用于存储对象的(可写)属性。
- instance.__class__¶
类实例所属的类。
- class.__bases__¶
由类对象的基类所组成的元组。
- definition.__name__¶
类、函数、方法、描述器或生成器实例的名称。
- definition.__qualname__¶
类、函数、方法、描述器或生成器实例的 qualified name。
3.3 新版功能.
- class.__mro__¶
此属性是由类组成的元组,在方法解析期间会基于它来查找基类。
- class.__subclasses__()¶
每个类都存有对直接子类的弱引用列表。本方法返回所有存活引用的列表。列表的顺序按照子类定义的排列。例如:
>>> int.__subclasses__() [<class 'bool'>]
Integer string conversion length limitation¶
CPython has a global limit for converting between int
and str
to mitigate denial of service attacks. This limit only applies to decimal or
other non-power-of-two number bases. Hexadecimal, octal, and binary conversions
are unlimited. The limit can be configured.
The int
type in CPython is an abitrary length number stored in binary
form (commonly known as a “bignum”). There exists no algorithm that can convert
a string to a binary integer or a binary integer to a string in linear time,
unless the base is a power of 2. Even the best known algorithms for base 10
have sub-quadratic complexity. Converting a large value such as int('1' *
500_000)
can take over a second on a fast CPU.
Limiting conversion size offers a practical way to avoid CVE-2020-10735.
The limit is applied to the number of digit characters in the input or output string when a non-linear conversion algorithm would be involved. Underscores and the sign are not counted towards the limit.
When an operation would exceed the limit, a ValueError
is raised:
>>> import sys
>>> sys.set_int_max_str_digits(4300) # Illustrative, this is the default.
>>> _ = int('2' * 5432)
Traceback (most recent call last):
...
ValueError: Exceeds the limit (4300) for integer string conversion: value has 5432 digits; use sys.set_int_max_str_digits() to increase the limit.
>>> i = int('2' * 4300)
>>> len(str(i))
4300
>>> i_squared = i*i
>>> len(str(i_squared))
Traceback (most recent call last):
...
ValueError: Exceeds the limit (4300) for integer string conversion: value has 8599 digits; use sys.set_int_max_str_digits() to increase the limit.
>>> len(hex(i_squared))
7144
>>> assert int(hex(i_squared), base=16) == i*i # Hexadecimal is unlimited.
The default limit is 4300 digits as provided in
sys.int_info.default_max_str_digits
.
The lowest limit that can be configured is 640 digits as provided in
sys.int_info.str_digits_check_threshold
.
Verification:
>>> import sys
>>> assert sys.int_info.default_max_str_digits == 4300, sys.int_info
>>> assert sys.int_info.str_digits_check_threshold == 640, sys.int_info
>>> msg = int('578966293710682886880994035146873798396722250538762761564'
... '9252925514383915483333812743580549779436104706260696366600'
... '571186405732').to_bytes(53, 'big')
...
3.11 新版功能.
Affected APIs¶
The limitation only applies to potentially slow conversions between int
and str
or bytes
:
int(string)
with default base 10.int(string, base)
for all bases that are not a power of 2.str(integer)
.repr(integer)
any other string conversion to base 10, for example
f"{integer}"
,"{}".format(integer)
, orb"%d" % integer
.
The limitations do not apply to functions with a linear algorithm:
int(string, base)
with base 2, 4, 8, 16, or 32.格式规格迷你语言 for hex, octal, and binary numbers.
str
todecimal.Decimal
.
Configuring the limit¶
Before Python starts up you can use an environment variable or an interpreter command line flag to configure the limit:
PYTHONINTMAXSTRDIGITS
, e.g.PYTHONINTMAXSTRDIGITS=640 python3
to set the limit to 640 orPYTHONINTMAXSTRDIGITS=0 python3
to disable the limitation.-X int_max_str_digits
, e.g.python3 -X int_max_str_digits=640
sys.flags.int_max_str_digits
contains the value ofPYTHONINTMAXSTRDIGITS
or-X int_max_str_digits
. If both the env var and the-X
option are set, the-X
option takes precedence. A value of -1 indicates that both were unset, thus a value ofsys.int_info.default_max_str_digits
was used during initilization.
From code, you can inspect the current limit and set a new one using these
sys
APIs:
sys.get_int_max_str_digits()
andsys.set_int_max_str_digits()
are a getter and setter for the interpreter-wide limit. Subinterpreters have their own limit.
Information about the default and minimum can be found in sys.int_info
:
sys.int_info.default_max_str_digits
is the compiled-in default limit.sys.int_info.str_digits_check_threshold
is the lowest accepted value for the limit (other than 0 which disables it).
3.11 新版功能.
小心
Setting a low limit can lead to problems. While rare, code exists that
contains integer constants in decimal in their source that exceed the
minimum threshold. A consequence of setting the limit is that Python source
code containing decimal integer literals longer than the limit will
encounter an error during parsing, usually at startup time or import time or
even at installation time - anytime an up to date .pyc
does not already
exist for the code. A workaround for source that contains such large
constants is to convert them to 0x
hexadecimal form as it has no limit.
Test your application thoroughly if you use a low limit. Ensure your tests
run with the limit set early via the environment or flag so that it applies
during startup and even during any installation step that may invoke Python
to precompile .py
sources to .pyc
files.
Recommended configuration¶
The default sys.int_info.default_max_str_digits
is expected to be
reasonable for most applications. If your application requires a different
limit, set it from your main entry point using Python version agnostic code as
these APIs were added in security patch releases in versions before 3.12.
Example:
>>> import sys
>>> if hasattr(sys, "set_int_max_str_digits"):
... upper_bound = 68000
... lower_bound = 4004
... current_limit = sys.get_int_max_str_digits()
... if current_limit == 0 or current_limit > upper_bound:
... sys.set_int_max_str_digits(upper_bound)
... elif current_limit < lower_bound:
... sys.set_int_max_str_digits(lower_bound)
If you need to disable it entirely, set it to 0
.
备注