# 路径决策 ```{contents} ``` ## 概览 `路径决策`是规划模块的任务,属于task中的decider类别。 规划模块的运动总体流程图如下: ![总体流程图](../images/task/lane_follow.png) 总体流程图以[lane follow](https://github.com/ApolloAuto/apollo/blob/r6.0.0/modules/planning/conf/scenario/lane_follow_config.pb.txt)场景为例子进行说明。task的主要功能位于`Process`函数中。 Fig.1的具体运行过程可以参考[path_bounds_decider]()。 ## 路径决策相关代码及对应版本 在上一个任务中获得了最优的路径,`路径决策`的功能是根据静态障碍物做出自车的决策。 `路径决策`的代码是[Apollo r6.0.0 path_decider](https://github.com/ApolloAuto/apollo/tree/r6.0.0/modules/planning/tasks/deciders/path_decider) - 输入 `Status PathDecider::Process(const ReferenceLineInfo *reference_line_info, const PathData &path_data, PathDecision *const path_decision)` - 输出 路径决策的信息都保存到了`path_decision`中。 ## 路径决策代码流程及框架 `路径决策`的整体流程如下图: ![流程图](../images/task/path_decider/path_decider.png) 在`Process`函数主要功能是调用了`MakeObjectDecision`函数。而在`MakeObjectDecision`函数中调用了`MakeStaticObstacleDecision`函数。 路径决策的主要功能都在`MakeStaticObstacleDecision`中。 ```C++ Status PathDecider::Process(const ReferenceLineInfo *reference_line_info, const PathData &path_data, PathDecision *const path_decision) { // skip path_decider if reused path if (FLAGS_enable_skip_path_tasks && reference_line_info->path_reusable()) { return Status::OK(); } std::string blocking_obstacle_id; if (reference_line_info->GetBlockingObstacle() != nullptr) { blocking_obstacle_id = reference_line_info->GetBlockingObstacle()->Id(); } // 调用MakeObjectDecision函数 if (!MakeObjectDecision(path_data, blocking_obstacle_id, path_decision)) { const std::string msg = "Failed to make decision based on tunnel"; AERROR << msg; return Status(ErrorCode::PLANNING_ERROR, msg); } return Status::OK(); } bool PathDecider::MakeObjectDecision(const PathData &path_data, const std::string &blocking_obstacle_id, PathDecision *const path_decision) { // path decider的主要功能在MakeStaticObstacleDecision中 if (!MakeStaticObstacleDecision(path_data, blocking_obstacle_id, path_decision)) { AERROR << "Failed to make decisions for static obstacles"; return false; } return true; } ``` ## 路径决策相关算法解析 针对上述的path-decider的流程图,进行代码分析。 - 获取frenet坐标系下的坐标 ```C++ ... ... // 1.获取frenet坐标下的path路径 const auto &frenet_path = path_data.frenet_frame_path(); if (frenet_path.empty()) { AERROR << "Path is empty."; return false; } ... ... ``` - 根据障碍物做决策 ```C++ ... ... // 2.遍历每个障碍物,做决策 for (const auto *obstacle : path_decision->obstacles().Items()) { const std::string &obstacle_id = obstacle->Id(); const std::string obstacle_type_name = PerceptionObstacle_Type_Name(obstacle->Perception().type()); ADEBUG << "obstacle_id[<< " << obstacle_id << "] type[" << obstacle_type_name << "]"; ... ... ``` 上图的红框中是循环体的主要内容,主要功能是遍历每个障碍物做决策。 - 如果障碍物不是静态或virtual,则跳过 ```C++ // 2.1 如果障碍物不是静态的或者是virtual的,就跳过 if (!obstacle->IsStatic() || obstacle->IsVirtual()) { // (stop fence,各种fence) continue; } ``` - 如果障碍物有了ignore/stop决策,则跳过 ```C++ // 2.2 如果障碍物已经有 ignore/stop 决策,就跳过 if (obstacle->HasLongitudinalDecision() && obstacle->LongitudinalDecision().has_ignore() && obstacle->HasLateralDecision() && obstacle->LateralDecision().has_ignore()) { continue; } if (obstacle->HasLongitudinalDecision() && obstacle->LongitudinalDecision().has_stop()) { // STOP decision continue; } ``` - 如果障碍物挡住了路径,加stop决策 ```C++ // 2.3 如果障碍物挡住了路径,加stop决策 if (obstacle->Id() == blocking_obstacle_id && !injector_->planning_context() ->planning_status() .path_decider() .is_in_path_lane_borrow_scenario()) { // Add stop decision ADEBUG << "Blocking obstacle = " << blocking_obstacle_id; ObjectDecisionType object_decision; *object_decision.mutable_stop() = GenerateObjectStopDecision(*obstacle); path_decision->AddLongitudinalDecision("PathDecider/blocking_obstacle", obstacle->Id(), object_decision); continue; } ``` - 如果是clear-zone,跳过 ```C++ // 2.4 如果是clear-zone,跳过 if (obstacle->reference_line_st_boundary().boundary_type() == STBoundary::BoundaryType::KEEP_CLEAR) { continue; } ``` - 如果障碍物不在路径上,跳过 ```C++ // 2.5 如果障碍物不在路径上,跳过 ObjectDecisionType object_decision; object_decision.mutable_ignore(); const auto &sl_boundary = obstacle->PerceptionSLBoundary(); if (sl_boundary.end_s() < frenet_path.front().s() || sl_boundary.start_s() > frenet_path.back().s()) { path_decision->AddLongitudinalDecision("PathDecider/not-in-s", obstacle->Id(), object_decision); path_decision->AddLateralDecision("PathDecider/not-in-s", obstacle->Id(), object_decision); continue; } ``` - nudge判断 ```C++ // 2.6 nudge判断,如果距离静态障碍物距离太远,则忽略。 // 如果静态障碍物距离车道中心太近,则停止。 // 如果横向方向很近,则避开。 if (curr_l - lateral_radius > sl_boundary.end_l() || curr_l + lateral_radius < sl_boundary.start_l()) { // 1. IGNORE if laterally too far away. path_decision->AddLateralDecision("PathDecider/not-in-l", obstacle->Id(), object_decision); } else if (sl_boundary.end_l() >= curr_l - min_nudge_l && sl_boundary.start_l() <= curr_l + min_nudge_l) { // 2. STOP if laterally too overlapping. *object_decision.mutable_stop() = GenerateObjectStopDecision(*obstacle); if (path_decision->MergeWithMainStop( object_decision.stop(), obstacle->Id(), reference_line_info_->reference_line(), reference_line_info_->AdcSlBoundary())) { path_decision->AddLongitudinalDecision("PathDecider/nearest-stop", obstacle->Id(), object_decision); } else { ObjectDecisionType object_decision; object_decision.mutable_ignore(); path_decision->AddLongitudinalDecision("PathDecider/not-nearest-stop", obstacle->Id(), object_decision); } } else { // 3. NUDGE if laterally very close. if (sl_boundary.end_l() < curr_l - min_nudge_l) { // && // sl_boundary.end_l() > curr_l - min_nudge_l - 0.3) { // LEFT_NUDGE ObjectNudge *object_nudge_ptr = object_decision.mutable_nudge(); object_nudge_ptr->set_type(ObjectNudge::LEFT_NUDGE); object_nudge_ptr->set_distance_l( config_.path_decider_config().static_obstacle_buffer()); path_decision->AddLateralDecision("PathDecider/left-nudge", obstacle->Id(), object_decision); } else if (sl_boundary.start_l() > curr_l + min_nudge_l) { // && // sl_boundary.start_l() < curr_l + min_nudge_l + 0.3) { // RIGHT_NUDGE ObjectNudge *object_nudge_ptr = object_decision.mutable_nudge(); object_nudge_ptr->set_type(ObjectNudge::RIGHT_NUDGE); object_nudge_ptr->set_distance_l( -config_.path_decider_config().static_obstacle_buffer()); path_decision->AddLateralDecision("PathDecider/right-nudge", obstacle->Id(), object_decision); } } ```