# 路径评估决策 ```{contents} ``` ## 概览 `路径评估决策`是规划模块的任务,属于task中的decider类别。 规划模块的运动总体流程图如下:  总体流程图以[lane follow](https://github.com/ApolloAuto/apollo/blob/r6.0.0/modules/planning/conf/scenario/lane_follow_config.pb.txt)场景为例子进行说明。task的主要功能位于`Process`函数中。 Fig.1的具体运行过程可以参考[path_bounds_decider]()。 ## 路径评估决策相关代码及对应版本 本节说明path assessment decider的代码流程。 请参考代码[Apollo r6.0.0 path_assessment_decider](https://github.com/ApolloAuto/apollo/tree/r6.0.0/modules/planning/tasks/deciders/path_assessment_decider) - 输入 `Status PathAssessmentDecider::Process(Frame* const frame, ReferenceLineInfo* const reference_line_info)` 输入Frame,reference_line_info。具体解释可以参考[path_bounds_decider]()。 - 输出 路径排序之后,选择第一个路径。结果保存在reference_line_info中。 ## 路径评估决策代码流程及框架 代码主体流程如下图:  ### 路径重复使用 ```C++ ... ... // 如果路径重复使用则跳过 if (FLAGS_enable_skip_path_tasks && reference_line_info->path_reusable()) { return Status::OK(); ... ... ``` ### 去掉无效路径 ```C++ ... ... // 1. 删掉无效路径. std::vector<PathData> valid_path_data; for (const auto& curr_path_data : candidate_path_data) { // RecordDebugInfo(curr_path_data, curr_path_data.path_label(), // reference_line_info); if (curr_path_data.path_label().find("fallback") != std::string::npos) { if (IsValidFallbackPath(*reference_line_info, curr_path_data)) { valid_path_data.push_back(curr_path_data); } } else { if (IsValidRegularPath(*reference_line_info, curr_path_data)) { valid_path_data.push_back(curr_path_data); } } } const auto& end_time1 = std::chrono::system_clock::now(); std::chrono::duration<double> diff = end_time1 - end_time0; ADEBUG << "Time for path validity checking: " << diff.count() * 1000 << " msec."; ... ... ``` 其中fallback的无效路径是偏离参考线以及道路的路径。regular的无效路径是偏离参考线、道路,碰撞,停在相邻的逆向车道的路径。 ### 分析并加入重要信息 ```C++ ... ... // 2. 分析并加入重要信息给speed决策 size_t cnt = 0; const Obstacle* blocking_obstacle_on_selflane = nullptr; for (size_t i = 0; i != valid_path_data.size(); ++i) { auto& curr_path_data = valid_path_data[i]; if (curr_path_data.path_label().find("fallback") != std::string::npos) { // remove empty path_data. if (!curr_path_data.Empty()) { if (cnt != i) { valid_path_data[cnt] = curr_path_data; } ++cnt; } continue; } SetPathInfo(*reference_line_info, &curr_path_data); // 修剪所有的借道路径,使其能够以in-lane结尾 if (curr_path_data.path_label().find("pullover") == std::string::npos) { TrimTailingOutLanePoints(&curr_path_data); } // 找到 blocking_obstacle_on_selflane, 为下一步选择车道做准备 if (curr_path_data.path_label().find("self") != std::string::npos) { const auto blocking_obstacle_id = curr_path_data.blocking_obstacle_id(); blocking_obstacle_on_selflane = reference_line_info->path_decision()->Find(blocking_obstacle_id); } // 删掉空路径 if (!curr_path_data.Empty()) { if (cnt != i) { valid_path_data[cnt] = curr_path_data; } ++cnt; } // RecordDebugInfo(curr_path_data, curr_path_data.path_label(), // reference_line_info); ADEBUG << "For " << curr_path_data.path_label() << ", " << "path length = " << curr_path_data.frenet_frame_path().size(); } valid_path_data.resize(cnt); // 如果没有有效路径,退出 if (valid_path_data.empty()) { const std::string msg = "Neither regular nor fallback path is valid."; AERROR << msg; return Status(ErrorCode::PLANNING_ERROR, msg); } ADEBUG << "There are " << valid_path_data.size() << " valid path data."; const auto& end_time2 = std::chrono::system_clock::now(); diff = end_time2 - end_time1; ADEBUG << "Time for path info labeling: " << diff.count() * 1000 << " msec."; ... ... ``` 这一步骤的代码执行流程如下: 1). 去掉空的路径 2). 从尾部开始剪掉lane-borrow路径,从尾部开始向前搜索,剪掉如下类型path_point:   (1) OUT_ON_FORWARD_LANE   (2) OUT_ON_REVERSE_LANE   (3) 未知类型 3). 找到自车道的障碍物id,用于车道选择 4). 如果没有有效路径,返回错误码 ### 排序并选出最有路径 这一步请看最后一章`相关算法解析` ### 更新必要信息 ```C++ // 4. Update necessary info for lane-borrow decider's future uses. // Update front static obstacle's info. auto* mutable_path_decider_status = injector_->planning_context() ->mutable_planning_status() ->mutable_path_decider(); if (reference_line_info->GetBlockingObstacle() != nullptr) { int front_static_obstacle_cycle_counter = mutable_path_decider_status->front_static_obstacle_cycle_counter(); mutable_path_decider_status->set_front_static_obstacle_cycle_counter( std::max(front_static_obstacle_cycle_counter, 0)); mutable_path_decider_status->set_front_static_obstacle_cycle_counter( std::min(front_static_obstacle_cycle_counter + 1, 10)); mutable_path_decider_status->set_front_static_obstacle_id( reference_line_info->GetBlockingObstacle()->Id()); } else { int front_static_obstacle_cycle_counter = mutable_path_decider_status->front_static_obstacle_cycle_counter(); mutable_path_decider_status->set_front_static_obstacle_cycle_counter( std::min(front_static_obstacle_cycle_counter, 0)); mutable_path_decider_status->set_front_static_obstacle_cycle_counter( std::max(front_static_obstacle_cycle_counter - 1, -10)); } // Update self-lane usage info. if (reference_line_info->path_data().path_label().find("self") != std::string::npos) { // && std::get<1>(reference_line_info->path_data() // .path_point_decision_guide() // .front()) == PathData::PathPointType::IN_LANE) int able_to_use_self_lane_counter = mutable_path_decider_status->able_to_use_self_lane_counter(); if (able_to_use_self_lane_counter < 0) { able_to_use_self_lane_counter = 0; } mutable_path_decider_status->set_able_to_use_self_lane_counter( std::min(able_to_use_self_lane_counter + 1, 10)); } else { mutable_path_decider_status->set_able_to_use_self_lane_counter(0); } // Update side-pass direction. if (mutable_path_decider_status->is_in_path_lane_borrow_scenario()) { bool left_borrow = false; bool right_borrow = false; const auto& path_decider_status = injector_->planning_context()->planning_status().path_decider(); for (const auto& lane_borrow_direction : path_decider_status.decided_side_pass_direction()) { if (lane_borrow_direction == PathDeciderStatus::LEFT_BORROW && reference_line_info->path_data().path_label().find("left") != std::string::npos) { left_borrow = true; } if (lane_borrow_direction == PathDeciderStatus::RIGHT_BORROW && reference_line_info->path_data().path_label().find("right") != std::string::npos) { right_borrow = true; } } mutable_path_decider_status->clear_decided_side_pass_direction(); if (right_borrow) { mutable_path_decider_status->add_decided_side_pass_direction( PathDeciderStatus::RIGHT_BORROW); } if (left_borrow) { mutable_path_decider_status->add_decided_side_pass_direction( PathDeciderStatus::LEFT_BORROW); } } const auto& end_time4 = std::chrono::system_clock::now(); diff = end_time4 - end_time3; ADEBUG << "Time for FSM state updating: " << diff.count() * 1000 << " msec."; // Plot the path in simulator for debug purpose. RecordDebugInfo(reference_line_info->path_data(), "Planning PathData", reference_line_info); return Status::OK(); ``` 更新必要信息: 1.更新adc前方静态障碍物的信息 2.更新自车道使用信息3.更新旁车道的方向 (1) 根据PathDeciderStatus是RIGHT_BORROW或LEFT_BORROW判断是从左侧借道,还是从右侧借道 ## 路径排序算法解析 最后这里说明排序算法。 ```C++ ... ... // 3. Pick the optimal path. std::sort(valid_path_data.begin(), valid_path_data.end(), std::bind(ComparePathData, std::placeholders::_1, std::placeholders::_2, blocking_obstacle_on_selflane)); ADEBUG << "Using '" << valid_path_data.front().path_label() << "' path out of " << valid_path_data.size() << " path(s)"; if (valid_path_data.front().path_label().find("fallback") != std::string::npos) { FLAGS_static_obstacle_nudge_l_buffer = 0.8; } *(reference_line_info->mutable_path_data()) = valid_path_data.front(); reference_line_info->SetBlockingObstacle( valid_path_data.front().blocking_obstacle_id()); const auto& end_time3 = std::chrono::system_clock::now(); diff = end_time3 - end_time2; ADEBUG << "Time for optimal path selection: " << diff.count() * 1000 << " msec."; reference_line_info->SetCandidatePathData(std::move(valid_path_data)); ... ... ``` 排序算法的流程具体如下: `ComparePathData(lhs, rhs, …)` 路径排序:(道路评估的优劣通过排序获得) - 1.空的路径永远排在后面 - 2.regular > fallback - 3.如果self-lane有一个存在,选择那个。如果都存在,选择较长的.如果长度接近,选择self-lane如果self-lane都不存在,选择较长的路径 - 4.如果路径长度接近,且都要借道: - (1) 都要借逆向车道,选择距离短的 - (2) 针对具有两个借道方向的情况: + 有障碍物,选择合适的方向,左或右借道 + 无障碍物,根据adc的位置选择借道方向 - (3) 路径长度相同,相邻车道都是前向的,选择较早返回自车道的路径 - (4) 如果路径长度相同,前向借道,返回自车道时间相同,选择从左侧借道的路径 - 5.最后如果两条路径相同,则 lhs is not < rhl排序之后:选择最优路径,即第一个路径